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Article history: It is the purpose of this short note to discuss some aspects of the validity question concern-
Received 19 October 2010 ing the Korteweg-de Vries (KdV) approximation for periodic media. For a homogeneous

Available online 19 May 2011

! . model possessing the same resonance structure as it arises in periodic media we prove the
Submitted by P. Broadbridge

validity of the KdV approximation with the help of energy estimates.
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1. Introduction

There are various papers proving that a number of systems, such as the Fermi-Pasta-Ulam (FPU) system or the water
wave problem, can be approximately described in the long wave limit by solutions of a formally derived Korteweg-de Vries
(KdV) equation,

IrA = 1103 A + 12 Adx A

with v1,v1, €eR, T e R, X e R and A(X, T) € R. See for instance [4,11-13,1,7]. Proving the validity of such approximations
is a nontrivial task since the solutions, which are of order O(g2), have to be shown to exist on time scales of order O(e~3)
where 0 < € « 1 is the small perturbation parameter used for the description of the long wave limit, see e.g. Eq. (5).

One encounters new difficulties when trying to prove the validity of the KdV equation for systems with some kind of
periodicity, such as polyatomic FPU systems or the water wave problem with a periodic bottom. A first effort to address
this issue can be found in Ref. [3], where the water wave problem with a long wave periodic bottom is addressed. In
investigating the validity question for general periodic bottoms and the polyatomic FPU system one sees that the proof in
the homogeneous case cannot be transferred line for line to the periodic case. The reason is the occurrence of a resonance
which has not been handled before. It is the purpose of this work to address this issue in a model with the same resonance
structure, but without additional technical difficulties arising from the periodicity of the system.

By validity, we mean that the error between the approximation based on the formally derived equation (KdV in our
case) and the actual solution of the original problem is bounded over a long time interval (O(e~3) in our case), see e.g.
Theorem 1. One method to bound this error is with use of energy estimates and Gronwall’s inequality [8]. There are some
systems where this method of energy estimates cannot be directly applied, such as systems with quadratic nonlinearities.
A common strategy in such situations is to transform the problem, by means of a normal form transform, to an equivalent
one where energy estimates and Gronwall’'s inequality can be applied. In performing such normal form transforms, the
so-called non-resonance conditions arise, which are restrictions on the wavenumbers, see e.g. Eq. (4). In some instances, it
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Fig. 1. Spectral situation corresponding to a coupled Boussinesq and Klein-Gordon system.

turns out that the validity result can still be shown in spite of resonances. How to deal with these resonances is a nontrivial
issue, and each type must be handled separately. The type of resonance we deal with in this note follows from the spectral
situation depicted in Fig. 1.
The model we consider is a Boussinesq equation coupled with a Klein-Gordon equation, namely
v =02v —v+u®+2uv+v? (1)
OFu = d2u + 929%u + 9% (u + 2uv + v?), (2)
where u =u(x,t), v="v(x,t), x,t € R. The curves of eigenvalues are given by

w1 (0? =k/(1+k*) and wi2(k)? =k +1. (3)

We will derive KdV equation for the u-variable and validate the corresponding approximation. The v-variable is the counter-
part of the additional modes of the periodic FPU and water wave problem (see Section 3) that introduce the new difficulty.
Namely, when trying to eliminate terms in the error equation resulting from the v-variable, one obtains the following
non-resonance condition, see Section 2.2,

inf |@j (k) — w1(0) — wn (k)] >0, )
j.ne{—2,—1,1,2},keR

which does not hold with the spectral situation considered here. In this note, we will show how to overcome this seemingly
troublesome issue.

Notation. The many possible constants that are independent of 0 <& « 1 are denoted by C. The space H%(m) consists of
s-times weakly differentiable functions for which ||u|lpsem) = llup™ llus = (35— / 104 (up™)|2dx)1/2 with p(x) =1+ 2 is
finite, where we do not distinguish between scalar and vector-valued functions or real- and complex-valued functions. We
use H® as an abbreviation for H*(0). Fourier transform of a function u is denoted with

Ful =i = / uoe- " dx

and is an isomorphism between H®(m) and H™(s). The point-wise multiplication (uv)(x) = u(x)v(x) in the x-space corre-
sponds to the convolution

o0

(@ % D) (k) = / ik — 1o ()l

—00
in Fourier space. The pseudo-differential operator w(idy) in the x-space is defined in Fourier space,
w(idu) = F Hw®i k) ),

where w(k) is a piece-wise analytic function.
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2. The validity of the KdV approximation

In order to derive the KdV equation we make the ansatz

EYXVx ) =e?A(e(x— 1), &%) and e2yXV=o. (5)
Inserting this ansatz in the u-equation yields

Resy = —d7u + d7u + 92 97u + 7 (u* + 2uv + v?)

=e%(—2070xA — 83 A + 83 (A?)) + O(8),

where T = &2t and X = (x — t). Hence equating the coefficient of € to zero yields the KdV equation

—207A — 33 A + dx(A%) =0. (6)
The remainder of this work is dedicated to proving the following approximation theorem, which is also sketched at the end
of the section.
Theorem 1. Let A € C([0, To], H3(R, R)) be a solution of the KdV equation (6). Then there exist €y, C > 0 such that for all & € (0, gg)
we have solutions (u, v) of (1)-(2) such that

sup  sup|(u, v)(x, t) — (€2yXV (x,1),0)| < Ce72.

te[0,To/e3] xeR

Remark 2. As already said the proof of such an approximation theorem is a nontrivial task since solutions of order O (g2)
have shown to exist on time scales of order @ (¢~3). There are counterexamples where formally derived amplitude equations
make incorrect predictions, cf. [9].

2.1. Estimates for the residual
For the proof of the approximation theorem we need the formal error, i.e. the residual, to be made small. Thus, besides
Res, we require that
Resy = —32v + 82v — v +u? 4+ 2uv + v?
is sufficiently small. Using ansatz (5) we have
Res, = e*A%(e(x — 1), £°¢).

Since this is too large for our purposes we modify our previous approximation by adding higher order terms, namely we
consider

&2y = e*A(e(x — 1), 1), ety =e*Bi(e(x — 1), £3t) + ®Ba(e(x — 1), £%1). (7)

Throughout the remainder of this note we will work with ansatz (7). The result in Theorem 1 follows since the modified
ansatz is sufficiently close to ansatz (5). By choosing

Bi =A% and B,=2AB
we find
Resy = £8(—07 A + 205 (AB1) — 20793 A) + O(e'?),
Res, = £8(20xdrB1 + 2AB, + B2) + O(£'?).
Lemma 3. Fix s > 2 and let A € C([0, To], Ht8(R, R)) be a solution of the KdV equation (6). Then there exist gy, C > 0 such that for
all e € (0, &g) we have
sup  (IIResyllus + [IResy [|us) < C&'>/2,

te[0,To /&3]

Proof. The assumption A(-,T) € HS*8(R,R) is necessary to estimate 2B, € HS(R,R) via By = O(By), By = O(A?), and
orTA = (9(8)3(A). For presentation purposes, we did not state all terms of Res, and Res, explicitly (we wrote instead O(e19)).
They can be computed in a straight-forward way, and we have sufficient regularity such that the necessary estimates can
be obtained. The loss of £~1/2 comes from the scaling properties of the L?-norm,

/]A(ex)|2dx:e’1/‘A(X)|2dX. O
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2.2. The error estimates

We define the error functions R, and R, through e#R, =u — &2y, and ¢#R, = v — g%y, with B = 7/2. They satisfy

atzszava_Rv +282quu+2521/fuRv+53ng (8)
7Ry = 3Ry + 8207 Ry + 82 (26* Yy Ry + 26*YuRy) + &3 gu, (9)

where the terms g, and g, provide high enough orders w.r.t. & such that they cause no difficulties in arriving at the O(s~3)
time scale. In detail, we have that their H*-norm can be estimated by

< C(e(IRulls + IRy llas) + &2 (IRullps + IRy 11s)” + €).

The residual terms Res;, and Res, are contained in g, and g, respectively, which is why we require Lemma 3. Throughout
this note, several other higher order terms will arise which we will abbreviate in a similar way. The terms that do cause
difficulties are those in Egs. (8)-(9) with an &2 coefficient. The term which is not underlined is already present in the
classical case and can be controlled with a suitable chosen energy due to the presence of the second spatial derivative. See
the estimate of the term s, defined in (13), for example.

We start by trying to eliminate the terms that are underlined once. In order to do so we write (8)-(9) as a first order
system, which in Fourier space has the form

at’ﬁv = w2 Wv s

¥Wy = —02Ry + @, (26 * Ry + 2% * Ry) + €38y,

atﬁu =CU1Wu,
ath = _wlﬁu + w1 (2821%1 *ﬁu + 2821%1 *ﬁv) + 83gu,

where Wu = a);laﬁéu and W‘, = a);laﬁév, and w+1 and w4y are defined in Eq. (3). The HO(s)—norm of the terms gy (I, t) =
w118, t) and 8y (I, t) = w1 ()1, (1, t), where &, and &, are the Fourier transform of g, and gy, can be estimated by

~ ~ ~ ~ 2
< C(e(IRullyocsy + IRy lIos)) + &2 (IRullgocs) + IRv Il o)™ +1)-

The reasons are as follows. Since the nonlinear terms in (2) have two spatial derivatives in front, in Fourier space they are
O(12), and so the application of w; ()~ is well-defined for all the terms containing ﬁu and /Iiv and for most terms from the
residual. The terms which remain in the residual are time derivatives. They can be expressed via the right hand side of the
KdV equation as terms with spatial derivatives in front. Hence, in Fourier space all terms in g, (I, t) have at least an I factor
in front and so the application of w;(I)~! to these terms is well-defined. However, in the residual there is a loss of O(¢~1)
since one derivative is canceled by the application of w{(!)~!. Such a loss does not occur in the linear and nonlinear terms
w.r.t. Ry and R, since their order w.rt. & purely comes from the amplitude and not from the long wave character of the

ansatz.
W, \/_2 i —i R_4 ’

We diagonalize this system with
3{}?2 =iwyRy — ia)z_] (8212/,_, * (Ti] +’§,1) + Ezlﬁu * (ﬁz +§,2)) + 83g2,

(#)-50 DG

and find

otR_p = —iw2§,2 + ia)z_l (821]/” * (E] +§71) + 821},1 * (ﬁz +§,2)) + 83g,2,

9 R1 =i Ry — oy (829 * (R1+R_1) + &P * Ry +§—2)) + &gy,

3t§—1 = —ia)1ﬁ_1 +iw (Szlﬁu * (ﬁ] +§_1) + 82@,1 * (ﬁz +§_2)) + 83g_1.

The HO(s)-norm of the terms g_, ..., g2 can be estimated by

= = = = 2
< C(e(IR=2llgogs) + -+ + IR2 N go(s)) + €2 (IR=2ll o5y + -+ - + IRzl yo(s))” + 1)
The terms which are underlined once can be eliminated by a near identity change of coordinates

R=R+&M®Wu,R) (10)
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with R = (R2,R_2,R1,R_1),R=(R32,R_2,R1,R-1), and M a suitably chosen bilinear mapping which in Fourier space
has the form

M. R) = Z / mjj, (k) (k — m)R j, (m) dm
j1e{—2,—1,1,2}

for j € {—2, —1, 1, 2}. Direct computation leads to my; =my_ 3 =m_ y=m_y=myy =my_1=m_1_1=m_11 =0 and

ma1 (k) = i " (k) /(w2 (k) — @1(0) — w1 (K)),
ma—1(k) = iw; ' (k) /(w2 (k) — 01(0) — w_1(K)),
m_p_1(k) = —iw; ' (k) /(w_2(k) — @1(0) — w_1 (k).
m_1(k) = —iw; " (k) / (w-2(k) — @1(0) — 1K),
miz (k) = i1 (k) /(w1 (k) — @1(0) — wa(k)),

my_a (k) = iw1 (k) /(w1 (k) — 01(0) — w_2(k)).
m_1_a(k) = —iw1 (k) /(w-1(k) — 1(0) — w_5(k)),
m_12(k) = —iw1 (k) /(w1 (k) — 01(0) — w2 (k)),

where we used the fact that v, is strongly concentrated close to the wavenumber k = 0. A more detailed description of the
above normal form transform can be found in several other works, see e.g. [10, Section 2.2]. By avoiding the terms that are
underlined twice in the normal form transform, we arrive at the less restrictive condition,

inf | w1z (k) — w1 (k) — w+1(k)| > 0,
keR
inf | w11 (k) — w1 (k) — w+2(k)| > 0,
keR

which is satisfied with spectral situation considered here, see Fig. 1. Since all mj;, are uniformly bounded the transformation

I+ &2M is a smooth linear mapping from H® to H® for every s > 0. Therefore, after the normal form transform we have
successfully eliminated the terms with a single underline, resulting in the system

WR2 =i Ry — iwz_l (821/Afu * (7%2 + 7%72)) +&3%,,

8{7’2\72 = —iwzﬁ,Z + ia)z_] (821&11 * (7%2 + 7’572)) + 83§,2,

¥R =iw Ry — iw; (821/}11 * (Ry + 7%71)) + 3%,
dR_1 = —iwR_1 + i (82% s (R1+ 73_1)) +&%8 1.
The HO(s)-norm of the terms §_5, ..., &, can be estimated by

~ ~ ~ ~ 2
C((IR=2llpos) + -+ + IR2llpogs)) + €2 (IR=2llpogs) + - + IRzl o))~ + 1)-

If we try to proceed in the same way to eliminate the term which is underlined twice, one sees that the non-resonance
condition (4) is violated since w; (k) = w1(0) + w, (k). Moreover, there is no spatial derivative present in this term, and so
partial integration w.r.t. x cannot be applied to gain higher powers of the small perturbation parameter ¢. Therefore, a very
serious difficulty seems to be present in the problem. Surprisingly, simple energy estimates are sufficient to estimate this
term. We start by unapplying the diagonalization and returning to the x-space,

*Ry = w2 (id)Wy + €282,

IWy = —w2(i0)Ry — w5 ' (i00) (282 YuRy) + 381,

Ry = w1 ({9 Wy + 381,

Wy = —1(id) Ry — 01(i0x) (262 Yy Ry) + &> &2 (11)
The H®-norm of the terms g_,, ..., g2 can be estimated by

C((IRv ks + -+ + IWullms) + &2 (IR s + -+ + Wy ||Hs)2 +1).

We consider the energy

—50— <f|afw27zv| dx+/|afw2wv| dx)+2(/}a Ru| dx+/{a Wil dx)
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where we have written w; instead of w;(idy) for notational simplicity. We compute 9;&p and find that the autonomous
linear terms cancel so that

0ty = —8251 — 8252 + 83g5

where
s1= ZZ/(B,{a)sz)wu(a,{Rv)dx, (12)
j=0
5=2% / (34 Wa)or (Y (33Rw)) di. (13)
j=0

where we used 9y, = O(¢g). We have the estimate
lgel < C(& +&'263% +1).

Making use of (11) the terms s; and s can be rewritten as

s—1
s1 =ZZ/(ata,{Rv)lpu(a,{Rv)dx—i—szgsl
j=0
S_l . .
=atZ/(a){Rv)wu(a;{Rv)dx+8g31,2,
j=0
s . .
$2 :zZ/(ata,{Ru)m/fu(a){Ru)dx+szgs2
j=0

s
=0 Z /(agRu)V/u (aiRu) dx +&gs, 2,
j=0

where we used 9y, = O(¢g). As a consequence we find

31 =€3(ge + Z512 + 855.2) = €8¢, (14)
where
£1=Eo+ &2 Z/(a,{nv)wu(a,{nv)dwr g’ Z/(a,{n,,)wu(a,{m)dx
=0 j=0
and where

lge, | < C(E1 462677 +1).

Hence, a simple application of Gronwall’s inequality yields the O(1)-boundedness of &; for all t € [0, To/&3] for &€ > 0
sufficiently small. Since ||[R, + Wy + Ry + Wy |lgs < /&1 for € > 0 sufficiently small the result follows. A more detailed
account of these last arguments can be found in various other works, see e.g. Ref. [10]. O

In order to increase the readability of the paper and to illustrate the robustness of the scheme w.r.t. future applications
we provide a short sketch of what we have done.

Sketch of the proof. We write a true solution of (1)-(2) as approximation plus error, i.e., u = &2y, + PR, and v =%y, +
ePR, with g =7/2. The error satisfies

2Ry = 2Ry — Ry + 282y Ry + 2%y Ry + O(£3),
7Ry = 3Ry + 0207 Ry + 82 (262 Yy Ry + 262y Ry) + O(&7).
After elimination of the nonresonant terms the system decouples up to order O(e3), namely
Ry =Ry — Ry + 262 YRy + O(&%),
2p _ a2 242 2(92 3
97 Ry = 05 Ry 4 07 9 Ru + 95 (2e° Yy Ry) + O(£).
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Then multiplying the first equation with 9;R, and the second equation with d;R, gives after integration w.r.t. x the energy
estimates

d /((avaf + (8xRv)* + (Ry)? — 2&% Yy (Ry)?

+ (3 Ru)? + (BxRu)? + (B dxRu)* — 26% Yy (3Rw)?) dx = O(3),

where we used partial integration, 9, = O(¢), and 9y, = O(¢). Hence the integral stays ©@(1) bounded on an O(s~3)
time scale. Multiplication of the second equation with 9;9; 2R, and integration w.rt. x yields estimates for the L?-norm of
Ry and 895 1Ry.

3. Outlook

It is the goal of future research to transfer the method developed in this short note to the water wave problem with
periodic bottom and to polyatomic FPU models. In the periodic setting, the solutions of the linearized equations are given
by oscillations of Bloch waves e ®Oteiy, (I, x), with wy(l, x) = wp(l, x + X,) where X, is the underlying periodicity of the
system and [ is the spectral variable. The curves of eigenvalues w; and w_i satisfy w1(0) = w_1(0) =0, where all other
curves of eigenvalues wy,(l), which are not present in the corresponding spatially homogeneous case, are bounded away
from zero. In this setting, the KdV equation can also be derived for the modes u; and u_1. The modes u, belonging to the
new curves of eigenvalues wy(l), along with u; and u_1, are resonant with themselves, just as we had here with v playing
the role of u,. A consequence is that the unu; appearing in the equation for the error cannot be eliminated with the usual
normal form transform in the equation corresponding to u,. However, we showed in this article that these terms can be
handled with the use of energy estimates. For polyatomic FPU models only finitely many curves of eigenvalues occur and
thus, we believe the only remaining difficulties in proving an approximation result in this periodic setting are of a technical
nature since the Bloch wave transform must be used instead of the Fourier transform. However, normal form transforms in
Bloch space are an involved task, as can be seen for instance in [2], due to the infinitely many curves of eigenvalues which
occur in general. Moreover, in general normal form transforms of quasi-linear systems leads to a loss of regularity. This loss
occurs for the water problem and has not been solved so far in case of finite depth.

Interestingly, the same resonance structure occurs in case of modulations of periodic wave trains in dispersive systems.
With a different scaling Whitham’s equations can be derived for the same modes uy and u_q. An approximation theorem
has been proved in [6] in case that the other curves wy are not present. In case of lattice equations approximation results
can be found in [5] in the limit of linear equations and in the hard sphere limit. Again such approximation proofs are a
nontrivial task since solutions of order ©(1) have shown to exist on time scales of order @(¢~!) where ¢ is defined via
a spatial scaling. The validity of Whitham’s equations is still one of the major open problems in the theory of modulation
equations. It will be the subject of future research to investigate how the above ideas can be used to solve, at least partially,
this important problem.
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