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Abstract

Over the past few decades, a multi-disciplinary research community has documented the goods and
services provided by ecosystems in specific sites scattered across the world. This research
community has now begun to focus on creating methods and tools for mapping and valuing the
ecosystem services produced on any landscape in the world. We describe some of these methods
and tools and how they calculate and express ecosystem service provision and value on landscapes.
We also describe methods for predicting landscape change. These predictions can be used by multi-
ecosystem service models to assess potential changes and trade-offs in ecosystem service provision
and values into the future.

Introduction and context
Ecosystem services are the processes and conditions that
are mediated by ecosystems and their biodiversity and
that sustain and enhance human life [1-3]. Ecosystem
services include processes that support the production of
consumable goods (e.g., food and timber), processes
that support and regulate life (e.g., storm surge protec-
tion [4,5], crop pollination [6,7], and carbon sequestra-
tion [8]), conditions that enhance life (e.g., recreational,
aesthetic, and spiritual values [9,10]), and conditions
that preserve valuable options (e.g., undiscovered
medicinal benefits from plants [11]). Like built and
human capital, the natural capital that underpins
ecosystem service production is an essential input into
our economies and livelihoods.

However, the value that natural capital, when compared
with other forms of productive capital, contributes to
our economies and well-being is often poorly understood
and scarcely monitored. As a result, the ecosystem services
generated by it are typically undervalued by markets and
therefore are susceptible todegradationanddepletion [12].
Correcting for this market failure requires two advances
in analytical capabilities. First, we need to understand how

changes in land use/land cover (LULC), landmanagement,
ecosystemand climatic dynamics, andhumanpopulations
on a landscape translate into changes in ecosystem service
provision, the use of services, and the value of use [13].
Second, based on this understanding, we need to design
and implement policy interventions that will improve
aggregate social welfare on the landscape, where social
welfare includes both ecosystem service values and
marketed economic returns [14-20]. This policy step
requires a thorough understanding of the human prefer-
ences for the goods and services that nature provides and
the types of incentives that ecosystem service providers
(primarily land owners and managers) and potential
beneficiaries will respond to. In this review, we discuss
some recent advances in the modelling of terrestrial
ecosystem service provision, the use of services, and value
of use (see [21] and cross-reference to Kai Chan and Mary
Ruckelshaus’ F1000 report for a discussion of marine
ecosystem service models [22]).

Modelling foundations
There are plenty ofmodels that track one or two terrestrial
ecosystem processes (for examples, see [23-33]). With
them, measuring the impact of landscape pattern on the
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provision, use, and value of multiple ecosystem services
requires running each service model. And if the potential
impacts of landscape change scenarios are being inves-
tigated, then this process has to be replicated for each
scenario as well [34]. In most cases, such a task is
impractical given the complexity of the single-process
models, their various analytical scales, and their tend-
ency not to place ecosystem processes and conditions
into human use and value contexts, the link that
transforms processes and conditions into services. The
Millennium Ecosystem Assessment (MA) [35] was one of
the few efforts to use individual models to measure the
potential impact of projected LULC change on the
provision of multiple ecosystem services (see [36-38]
for a similar large-scale example). Specifically, the MA
research team created four scenarios of global popula-
tion, economic, and technology change over time. The
MA modellers then used already-published models to
allocate the global LULC changes necessary to satisfy each
scenario’s demand for living space, food, and energy
subject to scenario-specific regional and global con-
straints and expected climate change. Finally, the MA
research team used already-published, single-process
models to determine each scenario’s impact on the
global environment, including the provision of ecosys-
tem services.

The MA’s reliance on complicated biophysical and
economic models in its scenario analysis and the MA’s
global focus has limited wider replication of its ecosystem
service modelling methodology, experimentation with
alternative scenarios, and discussion of scenario results at
local levels [39]. These limitations have fuelled a quest to
create multi-ecosystem service modelling systems that can
build on the MA’s foundation of scientifically rigorous
ecosystem service modelling but that are more user-
friendly, flexible, and transparent and that can be applied
at scales relevant to local policy-makers and concerned
citizens. The hope is that these emerging modelling
systems will increase ecosystem service-based policy-
making and broaden the range of participants in
ecosystem service conservation planning.

Major recent advances
Models designed to link terrestrial ecosystem service
provision, the values associated with the provision,
and the trade-offs across services at the landscape-level
are emerging rapidly. Published examples include Eco-
Metrix, Integrated Valuation of Ecosystem Services and
Trade-offs (InVEST) [40,41], and Artificial Intelligence
for Ecosystem Services (ARIES) [42].

EcoMetrix (Parametrix, Inc., Auburn, WA, USA) is one of a
growing number of propriety software systems that are

designed to help local governments design and implement
ecosystem service conservation programs, including pay-
ment for ecosystem service programs. However, propriety
software systems limit experimentation and wider parti-
cipation in ecosystem service modelling. In contrast,
InVEST and ARIES are examples of open-source software
systems that allow for wide-scale user input and
experimentation.

Both InVEST and ARIES estimate the biophysical
provision of multiple ecosystem services across a land-
scape, can translate this provision into maps of service
use (who and where people are benefiting from service
provision) and monetary value (the value that people
receive from the use of the service), and can predict
trends in service provision and values on the landscape.
The main difference between these two models, and
across the ecosystem service modelling literature in
general, lies in the ecosystem service provision calcula-
tion and valuation methodology. InVEST determines
ecosystem service provision and value at a point on the
landscape by using ecological and economic production
functions, where LULC and related management and
biophysical data at the point and elsewhere on the
landscape are inputs (Figure 1). By contrast, ARIES uses a
benefit transfer approach. Under this methodology, each
point on the landscape is assigned ecosystem service
provision and value largely according to its LULC, where
the ecosystem service provision and values associated
with the LULC are culled from other site-based studies.
The more the LULC being valued on the study landscape
is similar in type, function, and landscape context to the
other studies providing its value, the more precise the
benefits transfer approach is.

For several reasons, we believe that the production
function approach produces more accurate and policy-
relevant results. First, production functions, if appropri-
ately calibrated, can register and value ecosystem service
changes due to subtle changes in ecosystem processes,
ecosystem conditions, or human access at some point
on the landscape. In contrast, a database of LULC values
used in a benefits transfer approach may not be rich
enough to register small changes in conditions at a point
if the change on the landscape does not involve LULC
conversion. Second, the change in ecosystem service pro-
vision and value at one point on the landscape given
change elsewhere on the landscape can be explained with
production functions, assuming that they are explained by
conditions at other points on the landscape. In contrast,
provision and value at a certain point on the landscape
tend to be insensitive to change at other locations under
the benefits transfer approach. The major drawback of
using production functions to calculate service provision
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Figure 1. Maps of change in ecosystem service provision and biodiversity conservation from 1990 to 2050 for the three land use/land
cover (LULC) change scenarios in the Willamette Basin, Oregon, USA, as determined with InVEST [59]

Comparing multiple outputs across different LULC scenarios demonstrates the extent of the synergies or trade-offs among services and biodiversity (here
biodiversity is treated as a separate attribute that forms the basis for all services). In this application of InVEST, the authors found little evidence of trade-offs between
ecosystem services and biodiversity conservation: scenarios that enhance biodiversity conservation also enhance the provision of ecosystem services. The next step
in this analysis is to convert all biophysical supply on the service maps, apart from biodiversity, into maps of human use metrics and monetary values. InVEST,
Integrated Valuation of Ecosystem Services and Trade-offs. Image originally published in Nelson et al. [58], Front Ecol Environ 2009.
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and value is that they require more data and expertise
to apply than the benefits transfer approach, and this
sometimes makes benefits transfer a tempting methodol-
ogy choice. Further investment in the production function
methodology is based on an optimistic assumption that
through research and practice, researchers can develop
tools that are sufficiently general to be applied anywhere
in the globe but that are sufficiently flexible to be tailored
to local conditions.

We know of two other open-source multi-ecosystem
service modelling and measuring methodologies under
development. The Economics of Ecosystems and Bio-
diversity (TEEB) is a recent European Commission-based
initiative tomeasure andmodel the provision and value of
ecosystem services [43]. A suite of interconnected ecosys-
tem service modules, collectively referred to as Multiscale
Integrated Models of Ecosystem Services (MIMES), have
been written for use with Simile (Simulistics Ltd.,
Edinburgh, UK), an object-based modelling and simula-
tion software. Although the MIMES modules are available
on the web [44], model documentation and related
publications are not available.

Multi-ecosystem service models are particularly useful to
policy-makers if they can help illustrate potential trade-
offs between economic development and ecosystem
service provision in the future. Such analyses require
predictions of future LULC and land management
patterns. There are many approaches for predicting
future LULC and land management patterns. For
example, in the EnVISION/Evoland modelling system,
simulated ’agents‘ (e.g., households, firms, local leaders,
and government agencies) make LULC and land mana-
gement change decisions on a landscape over time such
that their preferences are maximized subject to land-use
policy constraints [45,46]. In an alternative approach to
agent modelling, real-life agents on the landscape are
surveyed on their LULC decision-making and how their
decision process would change in response to new
policies. Future LULC maps are then created by allocat-
ing future LULC demand according to survey results
([47] and unpublished data from Swetnam et al.,).

The primary challenge in agent-based modelling is
accurately capturing all of the landscape change forces
that affect LULC and landmanagement decision-making;
the failure to account for one or more forces of change
can lead to LULC and land management change pre-
dictions that do not appear to be reasonable. Statistical
techniques that use observed LULC and land manage-
ment changes from the past to predict future changes,
such as econometric models and cellular modelling
methods [48-51], ostensibly capture all of the forces of

change that were present on the landscape in the past.
However, this means that if policy, biophysical, or
economic conditions are expected to change significantly
on the studied landscape or if the modeller wishes to
simulate the impact of a land-use policy or other land-
scape dynamic that did not exist in the past, then stati-
stical models used to predict future LULC and land
management patterns will have to be modified to
appropriately incorporate novel landscape dynamics.
Such modifications can be difficult to implement [52].

Finally, algorithms that spatially allocate expected LULC
change at the regional or global level according to land-use
suitability maps have been developed. In these app-
roaches, allocation of expected LULC change is guided by
spatially-explicit data that indicate which areas across a
region or globe are more suitable for which types of land
use. Suitability is generally determined by the economic
principle that land will be put to the use that generates the
best net economic returns [53,54]. This approach differs
from agent-based modelling and statistical techniques in
that it does not model individual agent decision-making
on the landscape or try to extrapolate past behavior into
the future but instead assumes that landscape change is
driven by basic principles that have been observed repea-
tedly. This approach is best applied in cases in which the
modeller is most interested in predicting change at very
large scales and the accuracy of predicting change at finer
spatial grains is not paramount.

Future directions
Nascent multi-ecosystem service models such as InVEST
and ARIES need to be rigorously validated and verified
against observed data [41]. Furthermore, ecological
processes are stochastic, scale-dependent, and often
non-linear, and may exhibit threshold effects [55]. The
emerging multi-ecosystem service models need to do a
much better job at considering and representing such
dynamics.

Multi-ecosystem service models will need to become
more consistent in their use of valuation metrics. First,
the value metric used needs to be landscape- and policy-
relevant. For example, the pollution retention service
provided by a landscape will be one value if we consider
the regulated water treatment costs avoided and another
if we consider the human mortality and morbidity
avoided. In landscapes where water pollution is strictly
controlled and regulated, avoided treatment costs are
more appropriate for policy analysis. In contrast, in
landscapes where the potable water supply is limited, the
value of human mortality and morbidity avoided due to
landscape and land management design may be more
policy-relevant. Second, the modelling systems need to
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do a better job of defining what values are not included in
monetary estimates. Non-monetized services can be just
as important to people on the landscape as monetized
services, and if the provision of non-monetized services
is not significantly highlighted, there is a risk that these
sources of value will be ignored during policy-making.

Ecosystem servicemodelling is just beginning to be applied
in the policy arena. For example, the state of New Jersey,
USA, used ARIES tomap its provision of ecosystem services
and their values [56]. InVEST is beingused to createmapsof
priority areas for environmental conservation in China and
Indonesia, to design self-sustaining water funds for
watershed protection in Colombia and Ecuador, and to
advise land-based carbon sequestration investments with
other ecosystem service co-benefits in the state of Hawaii
[57]. A consortiumoforganizations organizedby a research
team from Cambridge University is using various ecosys-
tem service models to advise the Tanzanian government
on the best use of international conservation funds. We
are certain that ecosystem service conservation and the
methods of tools used to guide it will increasingly play a
larger role in environmental policy around the world.

Abbreviations
ARIES, Artificial Intelligence for Ecosystem Services;
InVEST, Integrated Valuation of Ecosystem Services and
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