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1. Introduction

In this paper, we are concerned with studying the representations of the Lie group G “ SUp2, 1q.

In particular, we want to classify its unitary dual, denoted pG, consisting of all equivalence
classes of irreducible unitary group representations. Our main motivation for this is to give
an explicit Plancherel formula for SUp2, 1q, generalizing the notion of the classical Fourier
transform on R. To motivate the study of unitary representations in this context, we consider
the theory of Fourier series which decomposes an arbitrary function in L2pS1q into a discrete
sum of imaginary exponentials e2πint, where S1 is the circle group and

L2pS1q “ tf : S1 Ñ C
ˇ

ˇ

ż 1

0
|fpe2πitq|2dt ă 8u.

The Fourier transform f̂pnq of f P L2pS1q is given by

f̂pnq “

ż 1

0
fptqe´2πintdt

Then by the Fourier Inversion formula, f P L2pS1q can be expressed as a convergent Fourier

series, with coefficients f̂pnq P C defined as above:

fptq “
8
ÿ

n“´8

f̂pnqe2πint.

Moreover,
ż 1

0
|fptq|2dt “

8
ÿ

n“´8

|f̂pnq|2 ă 8.

This last line applied to S1 is known as the Plancherel theorem. We can interpret this in terms
of group representations for S1 acting on itself by rotation. Elements g P S1 are given by
g “ e2πit, and since the group is abelian, all of its irreducible representations are known to
be one-dimensional. They are, in fact, unitary and indexed by the integers n P Z, given by
πnpe

2πitq “ pe2πitqn. These unitary representations are precisely the imaginary exponentials
that decompose f P L2pS1q into a discrete sum.

Now consider the analogous theory of the Fourier transform on R. We note that the noncom-
pactness of the real line forces the decomposition of an element of L2pRq to no longer be discrete

(Pg. 5 in [8]). The classical Fourier transform f̂ of a function f P L2pRq is given by

f̂pξq “

ż 8

´8

fpxqe´2πixξdx

Then by the Fourier Inversion formula, f P L2pRq can be expressed as a convergent Fourier

integral, with “coefficients” f̂pξq P C defined as above:

fpxq “

ż 8

´8

f̂pξqe2πiξdξ.

Moreover,
ż 8

´8

|fpxq|2dx “

ż 8

´8

|f̂pξq|2dξ ă 8.

The imaginary exponentials pe´2πixqξ here indexed by ξ P R, are all the irreducible unitary
representations of R. Loosely speaking, we are decomposing an element f P L2pRq into a
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“continuous sum”, i.e., an integral, of irreducible unitary representations which are weighted
by the terms f̂pξq.

It is natural to ask whether this sort of Fourier analysis can generalize to a theory on more
general Lie groups G that are not necessarily compact or abelian. In essence, we want to express
an element of L2pGq by decomposing it into a weighted sum (discrete or continuous) of unitary
representations where

L2pGq “ tf : GÑ C
ˇ

ˇ

ż

G
|fpgq|2dg ă 8u for dg a left-invariant Haar measure on G.

Of course, there are an immense number of technical issues when making this generalization.
Determining the set of irreducible unitary representations is the most daunting task, and re-
mains an unsolved problem for general G. Also of particular importance is the need for a

measure on pG which makes sense for the group in question. For the case of S1 which is com-
pact, the measure only needed to be discrete, while for R, the measure was continuous. It
turns out that SUp2, 1q falls into a class of groups, which requires a measure defined both on a
continuous series of representations as well as on a separate discrete collection.

Our main goal in this paper is to determine pG for G “ SUp2, 1q. Working towards constructing
the desired unitary representations of SUp2, 1q, we will primarily be focused on investigating
the group structure of SUp2, 1q.

2. Definitions and Notation

2.1. Representation Theory.

Definition 2.1. Let G be a set and ˚ a binary operation on G. The set G is a group if and
only if the following hold for all g1, g2, g3 P G

(i) Closure: g1 ˚ g2 P G
(ii) Associativity: pg1 ˚ g2q ˚ g3 “ g1 ˚ pg2 ˚ g3q

(iii) Identity: There exists e P G such that for all g P G, e ˚ g “ g ˚ e “ g
(iv) Inverses: For all g P G, there exists g´1 P G such that g ˚ g´1 “ g´1 ˚ g “ e

Groups often arise in mathematics as the symmetries of some object we wish to study. We can
think of the group as consisting of the symmetry transformations acting on the object under
study. The above definition allows for many varieties of groups with potentially exotic group
actions. One important technique for obtaining more concrete realizations of an abstract group
is to consider its representations on a vector space. As the definition below indicates, group
elements are realized as linear transformations acting on a vector space, with composition
replacing the group action. When the vector space is finite-dimensional, we can realize the
group elements as matrices and the group action as matrix multiplication.

Definition 2.2. Suppose pG, ˚q is a group. A finite-dimensional representation pπ, V q of
G on a finite dimensional complex vector space V of dimension n is a group homomorphism

π : GÑ GLpV q
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where GLpV q represents the group of invertible linear transformations on V under composition,
or equivalently all nˆ n matrices M such that detpMq ‰ 0 under matrix multiplication. Thus
we can think of πpgq as an invertible matrix acting on the vector space V and we call V the
representation space of π.

We note that the representation π of G assigns a linear action to each element g P G, namely
πpgq. Now it is possible to study the structure of the the vector space V as determined by
the actions of all elements πpgq on V . Representation theory is a powerful tool in the study
of groups as it allows us to linearize the action of group elements and use techniques of linear
algebra to study otherwise nonlinear objects.

Note that in the previous definition of representation, we required that V be finite-dimensional.
While it is a more straight-forward definition to grasp, we will spend much of our time later dis-
cussing infinite-dimensional representations, so we need to define the notion of a representation
acting on a Hilbert space.

Definition 2.3. A Hilbert space H is a real or complex, inner product space (not-necessarily
finite-dimensional) that is also a complete metric space with respect to the distance function
induced by the inner product. The inner product on H will be denoted xv, wy for all v, w P H.
It must be sesquilinear, conjugate symmetric, and positive-definite. The norm of v is given by

|v| “
a

xv, vy

We say that a linear operator T : H Ñ H is bounded if and only if there exists c ă 8 such
that for all v P H, we have |T pvq| ď c|v|. A linear transformation T : H Ñ H is bounded if and
only if it is continuous under the metric induced by the inner product.

Definition 2.4. Suppose pG, ˚q is a group, H is a complex Hilbert space, and BpHq is the group
of bounded linear operators on H with bounded inverses under composition. A representation
pπ,Hq of G on H is a group homomorphism

π : GÑ BpHq

such that the map G ˆH Ñ H given by pg, vq ÞÑ πpgqv is continuous. In this case πpgq is no
longer necessarily represented by a matrix, but more generally as a bounded linear operator on
H.

When studying representations, we will be interested in questions about the linearized action of
group elements acting on H, so we will first introduce some relevant definitions. We know that
πpgq is a linear transformation, so we may think of it as represented by a matrix (though this
is only in an abstract sense for infinite-dimensional π). Thus we may think of the coefficients
of this matrix as functions Φ : GÑ C where

Φ : g ÞÑ xπpgqv, wy for v, w P H

where H is the representation space of π and x¨, ¨y is the inner product on H. Choosing a
suitable basis teiu

dimH
i“1 for H, the canonical matrix coefficients of the representation π are

denoted Φi,j for all 1 ď i, j ď dimH where Φi,j : g ÞÑ xπpgqei, ejy.
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Definition 2.5. If pπ,Hq is a finite-dimensional representation on a Hilbert space H, its char-
acter is the function

χπpgq “ trπpgq “
ÿ

i

xπpgqvi, viy

where vi is an orthonormal basis for H. Note that there is a more sophisticated character theory
for representations of infinite dimension that, while important for discussion of the Plancherel
formula, is beyond the scope of this paper.

Definition 2.6. An invariant subspace of a representation pπ,Hq is a vector subspace U Ď H
such that πpgqU Ď U for all g P G. A representation pπ,Hq is said to be irreducible if it has
no closed invariant subspaces other than 0 and H.

Definition 2.7. Let π and π̃ be representations of a group G acting on a representation spaces
H and H̃. We say π and π̃ are equivalent if and only if there exists a bounded linear operator
T : H Ñ H̃ with a bounded inverse such that

pT ˝ πpgqqv “ pπ̃pgq ˝ T qv

for all v P H. Such an operator T is called an intertwining operator.

For the purpose of generalizing the Fourier transform as was discussed in the introduction,
we will be mostly concerned with classifying the unitary representations, so we need to define
unitary operators.

Definition 2.8. A bounded linear operator U : H Ñ H on a Hilbert space H is called a
unitary operator if it satisfies U˚U “ UU˚ “ I where U˚ is the adjoint of U and I is the
identity operator. The adjoint U˚ is defined by the map U˚ : H Ñ H satisfying

xUx, yy “ xx, U˚yy for all x, y P H

where x˚, ˚y is the inner product on H. In the case where H “ Cn and xx, yy “ x1y1`¨ ¨ ¨`xnyn,

then U will be an nˆ n matrix, and U˚ “ U
t
, the conjugate transpose of U .

Definition 2.9. A representation π of a group G is called a unitary representation if πpgq
is unitary for all g P G, i.e.,

πpgq˚πpgq “ πpgqπpgq˚ “ I

For any group G, we will denote the set of equivalence classes of irreducible unitary represen-

tations by pG.

2.2. Matrix Lie Groups.

A Lie group is a differentiable manifold G which is also a group and such that the group product

GˆGÑ G defined by pg, hq ÞÑ gh

and the inverse map G Ñ G defined by g Ñ g´1 are differentiable. In this way, a Lie group
is simultaneously a smooth manifold and a group. Since we do not wish to discuss manifold
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theory in this paper, and because we are only concerned with Lie groups consisting of matrices,
we introduce the notion of a matrix Lie group.

Definition 2.10. The general linear group of degree n over the real numbers, denoted
GLpn,Rq, is the group of all n ˆ n invertible matrices with real entries. The general linear
group of degree n over the complex numbers, denoted GLpn,Cq, is the group of all invertible
nˆ n matrices with complex entries. Both are groups under matrix multiplication.

To proceed, we must first establish a notion of convergence for a sequence of matrices. Thus let
Am be a sequence of n ˆ n matrices with complex entries (or real without loss of generality).
We say that Am converges to a matrix A if each entry of Am converges to the corresponding
entry of A.

Definition 2.11 (Definition 1.4 in [2]). A matrix Lie group is any subgroup G of GLpn,Cq
with the following property: If Am is any sequence of matrices G, and Am converges to some
matrix A, then either A P G or A is not invertible, i.e., A R GLpn,Cq. In other words, a matrix
Lie group is a closed subgroup G of GLpn,Cq using the notion of convergence described above.

Definition 2.12 (Definition 1.6 in [2]). A matrix Lie group G is said to be compact if the
following are satisfied:

(1) If Am is a sequence of matrices in G that converges to a matrix A, then A P G.
(2) There exists a constant C such that for all A P G, |Aij | ď C for all 1 ď i, j ď n where

Aij is the ijth entry of A.

This definition essentially amounts to claiming that G is compact if it is a closed and bounded
subset of MnpCq, the set of 3 ˆ 3 matrices with complex entries, which can be thought of as

Cn2
. As is often the case, compactness is a favorable property, and the representation theory

of compact groups is well understood. In particular, it is known that all irreducible unitary
representations of a compact group G are finite-dimensional, i.e., they act on finite-dimensional
representation spaces.

Since it is our goal to determine the irreducible unitary representations of SUp2, 1q, it certainly
would be a nice simplifying convenience to be able to limit our search to finite-dimensional
representations. Unfortunately, we are not so lucky to have such convenience since SUp2, 1q
happens to be non-compact because it contains a noncompact subgroup which will be discussed
later. In fact, any nontrivial irreducible unitary representation of noncompact G is of infinite
dimension (CH 11.1, [5]). Left with the daunting task of determining the infinite-dimensional
representations of SUp2, 1q that are unitary, we will turn our attention to studying well-behaved
subgroups of SUp2, 1q, in particular those subgroups that are compact. This will involve in-
ducing unitary representations of these nice subgroups to representations of the whole group, a
process that will be discussed in detail when we introduce the principal series representations.

3. Relationship Between Lie Groups and Lie Algebras

An important technique in the study of a Lie group is being able to translate between the Lie
group and its associated Lie algebra, a non-associative algebra built on the tangent space to
the group’s identity element.
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Definition 3.1. A Lie algebra g over R (or C) is a finite dimensional real (or complex) vector
space endowed with a Lie bracket operation, r¨, ¨s defined to have the following properties:

gˆ gÑ g, px, yq ÞÑ rx, ys

where

(a) rx, ys is linear in x and y
(b) rx, xs “ 0 for all x P g
(c) rrx, ys, zs ` rry, zs, xs ` rrz, xs, ys “ 0 for all x, y, z P g (the Jacobi identity)

Let glpn,Cq be the vector space of n ˆ n matrices with complex entries. We define the Lie
bracket on glpn,Cq by rx, ys “ xy ´ yx. Note that with this definition of the Lie bracket, the
properties above hold for any x, y, z P glpn,Cq.

The most concrete relationship between the Lie group and its Lie algebra is achieved via the
exponential map, which for a Lie group G and its Lie algebra g is denoted by exp : gÑ G. For
a matrix Lie group, such as SUp2, 1q, the exponential map is given by the matrix exponential,
which for an nˆ n matrix A, is given by

exppAq “
8
ÿ

n“0

An

n!
“ In `A`

A2

2!
`
A3

3!
` ¨ ¨ ¨ `

An

n!
` . . .

It can be shown that the series defining exppAq converges for any n ˆ n matrix A. Thus
exp : A ÞÑ exppAq takes an element, A, of the Lie algebra g to an element, exppAq, of the
matrix Lie group G. While in general, exp : g Ñ G is neither surjective nor injective, there
are open neighborhoods U and W of the identities 0 in g and e in G, respectively, such that
exp : U Ñ W is actually a bijection. For more on the construction of a Lie algebra as the
tangent space to the identity of a Lie group, see Section I in [7]

In much of this paper, we will concentrate on Lie algebras, whose natural vector space structure
makes them easier to work with than the associated Lie groups. We are primarily motivated
by questions about the Lie group SUp2, 1q and thus its Lie algebra sup2, 1q, but first, we will
give some general facts about Lie algebras.

Definition 3.2. Suppose h is a vector subspace of a Lie algebra g. Then h is a Lie subalgebra
if and only if h is closed under the Lie bracket. That is:

rx, ys P h for all x, y P h

Definition 3.3. An ideal of g is a subalgebra h such that rx, ys P h for all x P h and all y P g.

Since rx, ys “ ´ry, xs, there is no distinction between left and right ideals in a Lie algebra. We
say that a non-zero Lie algebra g is simple if it is not abelian, i.e., rg, gs ‰ 0, and if it has no
ideals other than g or 0. A more general class of Lie algebras built on simple Lie algebras are
called semisimple. We say that a Lie algebra is semisimple if it is the direct sum of simple
Lie algebras. Note that most of the Lie algebras that we will work with for the remainder of
the paper fall under the classification of semisimple unless otherwise stated.
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Before we define the various Lie groups and Lie algebras of interest to us, it is worth discussing
the concept of complexification, which allows us to study complex Lie algebras even when our
underlying object is a real Lie algebra or real Lie group.

Definition 3.4. If V is a finite-dimensional real vector space, then the complexification of V ,
denoted VC is the space of formal linear combinations

v1 ` iv2 with v1, v2 P V

This becomes a real vector space in the obvious way and becomes a complex vector space if we
define

ipv1 ` iv2q “ ´v2 ` iv1

Proposition 3.5 (Proposition 2.44 in [2]). Let g be a finite-dimensional real Lie algebra and
gC its complexification as a real vector space. Then, the bracket operation on g has a unique
extension to gC which makes gC into a complex Lie algebra. We say the complex Lie algebra
gC is the complexification of the real Lie algebra g.

The extension of the bracket is done in the predictable way, since we require the new bracket
operation on gC to be bilinear, giving

rX1 ` iX2, Y1 ` iY2s “ prX1, Y1s ´ rX2, Y2sq ` iprX1, Y2s ` rX2, Y1sq

It is shown following Proposition 2.44 in [2] that this bracket operation in fact satisfies the
properties listed in Definition 3.1, implying that gC is in fact a complex Lie algebra. We say a
real Lie algebra g is a real form of a complex Lie algebra gC if gC is the complexification of g.
Note that while a real Lie algebra has only one unique complexification, a complex Lie algebra
will generally have multiple non-isomorphic real forms.

Definition 3.6 (Definition 3.12 in [2]). If G is a matrix Lie group with Lie algebra g and H
is a Lie subgroup of G, then H is a connected Lie subgroup of G if the Lie algebra h of H
is a subspace of g and every element h P H can be written in the form

h “ exppX1q exppX2q . . . exppXmq

with X1, X2, . . . , Xm P h. Connected Lie subgroups are also called analytic subgroups.

Definition 3.7 (Pg. 437 [7]). The complexification of a Lie group G over R is a complex
Lie group GC, containing G as an analytic subgroup such that the Lie algebra g of G is a real
form of the Lie algebra gC of GC. We refer to G as a real form of the Lie group GC.

At this point, let us define the Lie groups and Lie algebras of interest to us. These include the
real Lie group SUp2, 1q and its real Lie algebra sup2, 1q:

SUp2, 1q “
 

A P GLp3,Cq : A

¨

˝

1 0 0
0 1 0
0 0 ´1

˛

‚A˚ “

¨

˝

1 0 0
0 1 0
0 0 ´1

˛

‚ and detA “ 1
(

sup2, 1q “
 

X PMp3,Cq :

¨

˝

1 0 0
0 1 0
0 0 ´1

˛

‚X˚ `X

¨

˝

1 0 0
0 1 0
0 0 ´1

˛

‚“ 0 and trX “ 0
(
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where A˚ denotes the conjugate transpose of A. The theory when working with a complex Lie
algebra is often more elegant, so it useful to translate to the complexification of sup2, 1q, the
complex Lie algebra slp3,Cq. Thus we will define the complexifications of SUp2, 1q and sup2, 1q,
denoted by SLp3,Cq and slp3,Cq, respectively:

SLp3,Cq “ tA P GLp3,Cq : detpAq “ 1u

slp3,Cq “ tA PMp3,Cq : tr pAq “ 0u

Any other groups and algebras that we discuss will be introduced as needed.

4. Root Space Decomposition

In this section we will discuss the general theory behind the root space decomposition of a
complex Lie algebra g. After a discussion of the theory for general semisimple Lie algebras, we
will focus on the example case of the Lie algebra slp3,Cq.

Definition 4.1. Let g be a Lie algebra. A representation of g on a complex vector space V ‰
0 is a Lie algebra homomorphism π of g into glpV q, the Lie algebra of all linear transformations
of V into itself with the bracket product rA,Bs “ AB ´BA for A,B P glpV q. In particular, π
must preserve the Lie bracket, meaning

πrx, ys “ πpxqπpyq ´ πpyqπpxq “ rπpxq, πpyqs

Let End g denote all linear maps f : g Ñ g. Suppose h is a Lie subalgebra of g and consider
the adjoint map ad : hÑ End g where for x P h,

adpxq : y ÞÑ rx, ys for all y P g

Note that the notation adpxqy and rx, ys can be used interchangeably when we deal with x P h,
however we think of these expressions in subtly different ways. The adjoint representation of
the element x acting on y is denoted adpxqy, while rx, ys “ xy ´ yx describes the action of the
Lie bracket on the two elements x, y P g.

Of particular importance in studying the structure of a complex Lie algebra g are its Cartan
subalgebras. We give the conditions for a Cartan subalgebra for semisimple Lie algebras below.
Note that the definition of a Cartan subalgebra for a general Lie algebra is technical and not
particularly illuminating in our case where all of the primary Lie algebras we consider are
semisimple, so we do not include it.

Proposition 4.2 (Corollary 2.13 in [7]). Let g be a complex semisimple Lie algebra. A sub-
algebra h Ď g is a Cartan subalgebra if and only if h is a maximal abelian subalgebra of g
such that for all H P h, the maps ad

ˇ

ˇ

H
are diagonalizable.

An astute reader will notice that ad restricts to a representation of the Cartan subalgebra h
acting on the entire Lie algebra g. While a Lie algebra does not necessarily have a unique Cartan
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subalgebra, all Cartan subalgebras of a complex Lie algebra are conjugate under automorphisms
of the Lie algebra by Theorem 2.15 in [7].

Fix a Cartan subalgebra h Ď g. By Proposition 4.2 we know that tadpxq : x P hu is simulta-
neously diagonalizable. Since these maps act on g, this fact allows us to find a simultaneous
eigenspace decomposition of g of the form

g “ h‘
ÿ

α

gα

where h is the eigenspace with eigenvalue 0, and each gα is the eigenspace with eigenvalue α.
Each α is in the dual space h˚, i.e., α : hÑ C is a linear transformation. The eigenspace gα is
the set of all y P g such that

adpxqy “ αpxqy

for all x P h. We refer to α as a root of g with respect to h if gα ‰ t0u and α is not identically
zero. Let Φ denote the set of roots of g with respect to the Cartan subalgebra h. We note that
in the case where g is a complex Lie algebra, each gα is a 1-dimensional complex eigenspace
spanned by some vector xα so that gα “ Cxα. Thus we can rewrite the decomposition of g
above as:

g “ h‘
ÿ

αPΦ

Cxα

This is the root space decomposition of g with respect to h. Note that dim g “ dim h` |Φ|.

The set of roots Φ spans h˚, however Φ is not a linearly independent set. Now we introduce an
notion of positivity in h˚ by the following properties:

(1) for any non-zero λ P h˚, exactly one of λ and ´λ is positive
(2) the sum of positive elements is positive, and an positive multiple of a positive element

is positive

This determines a subset Φ` Ă Φ we we call the positive roots. Note that such a set Φ`

always exists by Theorem 6.36 in [2]. Within Φ` there exists a subset of “simple roots” Π: a
positive root α is a simple root if and only if α does not decompose as α “ β1 ` β2 with β1

and β2 both positive roots. While the choice of Φ` is not unique, once this subset is chosen, we
can write any positive root as a non-negative combination of simple roots, and further results
show that the particular choice of the positive roots does not matter in an important way for
our purposes.

Now let g “ slp3,Cq. One Cartan subalgebra of g consists of the 3 x 3 diagonal matrices with
trace zero with the following basis

(1) h “ Span
 

¨

˝

1 0 0
0 ´1 0
0 0 0

˛

‚,

¨

˝

0 0 0
0 1 0
0 0 ´1

˛

‚

(

“ SpantH1, H2u

Let Eij denote the 3ˆ 3 matrix of all 0s except for a 1 at the ij-th entry, e.g.,

E12 “

¨

˝

0 1 0
0 0 0
0 0 0

˛

‚, E32 “

¨

˝

0 0 0
0 0 0
0 1 0

˛

‚
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and so on. Also note that any x P h can be written

x “

¨

˝

λ1 0 0
0 λ2 0
0 0 λ3

˛

‚ where λ1 ` λ2 ` λ3 “ 0

For any Eij , we compute adpxqEij “ rx,Eijs “ xEij´Eijx “ pλi´λjqEij . Thus the eigenspace
spanned by Eij has eigenvalue λi ´ λj . In order to describe this eigenvalue in terms of roots,
we define ei P h

˚ as follows:

ei :

¨

˝

λ1 0 0
0 λ2 0
0 0 λ3

˛

‚ ÞÑ λi

It therefore follows that the set of roots Φ equals tei ´ ejui,j for 1 ď i ‰ j ď 3. We choose
Φ` “ te1 ´ e2, e2 ´ e3, e1 ´ e3u.

Therefore we have simple roots e1 ´ e2 and e2 ´ e3, which we will denote by α12 and α23,
respectively. In this notation

(2) Φ “ tα12, α23, α12 ` α23, ´α12, ´α23, ´α12 ´ α23u.

With the choice

(3) Φ` “ tα12, α23, α12 ` α23u,

we have

(4) Π “ tα12, α23u.

With the set of roots determined, we can write the explicit root space decomposition of slp3,Cq
by finding a vector X P slp3,Cq to span each 1-dimensional gα. In other words, for each α, we
want to find X such that for all H P h, we have

rH,Xs “ αpHqX

Such a vector X spans the space gα. These spaces are calculated as follows:

gα12 “ SpantE12u

gα23 “ SpantE23u

g´α12 “ SpantE21u

g´α23 “ SpantE32u

gα12`α23 “ SpantE13u

g´α12´α23 “ SpantE31u

Thus we have the full explicit root space decomposition as follows:

slp3,Cq “ h ‘ CE12 ‘ CE23 ‘ CE21 ‘ CE32 ‘ CE13 ‘ CE31
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5. Classification of Finite-Dimensional Representations of slp3,Cq

In this section, we will explore the general notion of weight spaces of a Lie algebra and how
weights can be used to classify the finite-dimensional representations of a Lie algebra. To
develop this theory, we will again focus on slp3,Cq. We note that the classification of the
finite-dimensional representations of slp3,Cq is well known. One method of proof is based on
a theorem of Hermann Weyl, often referred to as Weyl’s unitary trick, which we give below
specific to our case.

Theorem 5.1 (Weyl’s Unitary Trick- Proposition 7.15 in [7]).

Let GC “ SLp3,Cq. We note that its Lie algebra gC “ slp3,Cq has real forms slp3,Rq, sup2, 1q,
and sup3q. For a finite dimensional complex vector space V , a representation of any of the
following kinds on V leads, via the formula

slp3,Cq “ slp3,Rq ‘ islp3,Rq “ sup3q ‘ isup3q “ sup2, 1q ‘ isup2, 1q

to a representation of each of the other kinds:

(i) a representation of SLp3,Rq on V
(ii) a representation of SUp3q on V

(iii) a representation of SUp2, 1q on V
(iv) a holomorphic representation of SLp3,Cq on V
(v) a representation of slp3,Rq on V

(vi) a representation of sup3q on V
(vii) a representation of sup2, 1q on V

(viii) a complex-linear representation of slp3,Cq on V .

Note that holomorphic representation in pivq means where the associated representation of
slp3,Cq is complex-linear. Moreover, under this correspondence, invariant subspaces and equiv-
alences are preserved. Thus corresponding representations of all of the above types share the
same reducibility properties. Most frequently, this “unitary” trick uses knowledge the unitary
representations of the compact group, in this case SUp3q, to understand unitary representations
of the other groups and algebras in the list. More generally, if we can classify and understand
all finite-dimensional irreducible representations of slp3,Cq, we also therefore understand the
finite-dimensional irreducible representations of SUp2, 1q, (and SLp3,Rq, and SUp3q) and their
respective Lie algebras.

The approach we take to classify the representations of slp3,Cq involves simultaneously diago-
nalizing the linear transformations πpH1q and πpH2q where H1 and H2 are as defined in (1) in
the previous section.

Definition 5.2. Suppose pπ, V q is a representation of slp3,Cq. An ordered pair µ “ pk1, k2q P

C2 is called a weight for π if there exists v ‰ 0 in V such that

πpH1qv “ k1v

πpH2qv “ k2v

12



Such a vector v is called a weight vector, and for a particular µ, the space spanned by all
such v is the weight space corresponding to µ.

Proposition 5.3. Every representation of slp3,Cq has at least one weight.

Proof. Our proof is adapted from Proposition 5.4 in [2]. Since slp3,Cq is a vector space
over C, we know that πpH1q has at least one eigenvalue k1 P C. Let W Ă V be the eigenspace
for πpH1q with eigenvalue k1. Since rH1, H2s “ 0 and π must preserve the Lie bracket, we
have that rπpH1q, πpH2qs “ 0, i.e., πpH1q and πpH2q commute. Note that this implies that
πpH2qw PW for all w PW because

πpH1qpπpH2qwq “ πpH2qpπpH1qwq “ πpH2qk1w “ k1pπpH2qwq

Therefore πpH2q restricts to an operator on W , and it must therefore have at least one eigenvec-
tor w with eigenvalue k2. We therefore have that w is a simultaneous eigenvector for πpH1q and
πpH2q with eigenvalues k1, k2, respectively, meaning pk1, k2q is a weight for the representation
π. �

Proposition 5.4 (Corollary 5.5 in [2]). If π is a representation of slp3,Cq, then all of the
weights of π are of the form µ “ pk1, k2q where k1, k2 P Z

Proof. The proof is based on well-known results for slp2,Cq. Let g1 “ SpantH1, E12, E21u.
It is straightforward to check that g1 is a subalgebra of slp3,Cq that is isomorphic to slp2,Cq.
The representation π of slp3,Cq restricts to a representation π1 of g1, which by Theorem 4.12
in [2] guarantees that the eigenvalue k1 of πpH1q is an integer. The same argument applied to
g2 “ SpantH2, E23, E32u shows that the eigenvalue k2 of πpH2q is also an integer. �

A weight µ “ pk1, k2q is called a dominant integral element when k1 and k2 are non-negative
integers. We now turn our attention to a particular important kind of weight.

Definition 5.5. An ordered pair α “ pa1, a2q P C2 is called a root if

(1) a1 and a2 are both non-zero,
(2) there exists a nonzero vector v P slp3,Cq such that

rH1, vs “ a1v

rH2, vs “ a2v

Such a vector v is called a root vector corresponding to the root α.

Therefore a root is the pair of eigenvalues corresponding to the simultaneous eigenvector v for
adpH1q and adpH2q. In this way we note that roots are a special case of weights where the
representation π in question is the adjoint representation of h acting on g. We note that since
all the weights of a particular representation π are pairs of integers, it follows that α “ pa1, a2q P

Z ˆ Z. We would like to establish a correspondence between roots as we have defined them
here versus the context they were introduced in the last section. In the previous section in (2),
we found that the roots of slp3,Cq with respect to the diagonal matrices h were

Φ “ tα12, α23, α12 ` α23, ´α12, ´α23, ´α12 ´ α23u.
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We can calculate:

rH1, E12s “

¨

˝

1 0 0
0 ´1 0
0 0 0

˛

‚

¨

˝

0 1 0
0 0 0
0 0 0

˛

‚´

¨

˝

0 1 0
0 0 0
0 0 0

˛

‚

¨

˝

1 0 0
0 ´1 0
0 0 0

˛

‚

“

¨

˝

0 1 0
0 0 0
0 0 0

˛

‚´

¨

˝

0 ´1 0
0 0 0
0 0 0

˛

‚

“

¨

˝

0 2 0
0 0 0
0 0 0

˛

‚

“ 2E12 “ α12pH1qE12

And similarly for other root vectors, we have

rH1, E12s “ α12pH1qE12 “ 2E12

rH2, E12s “ α12pH2qE12 “ ´1E12

rH1, E23s “ α23pH1qE23 “ ´1E23

rH2, E23s “ α23pH2qE23 “ 2E23

By considering the eigenvalue of each eigenvector E12, E23 for each simple root under the
adjoint representation of h, we determine the ordered pairs pa1, a2q which correspond to each
root. Thus by the above computation, we have

α12 “ p2,´1q α23 “ p´1, 2q

Having determined this for the simple roots, we can easily calculate ´α12 “ p´2, 1q, ´α23 “

p1,´2q, α12 ` α23 “ p1, 1q, and ´α12 ´ α23 “ p´1,´1q. It is clear that there is a geometric
correspondence between the dominant integral weights and the roots, which is depicted in the
picture below, using the straightforward choice of basis for the space of weights where the
x-coordinate is the eigenvalue k1 of πpH1q and the y-coordinate is the eigenvalue k2 of πpH2q.

Λ1

Λ2

α12= 2Λ1 − Λ2

α23 = 2Λ2 − Λ1

h∗
R
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While this picture shows a basic relationship between the roots and the weights, we will intro-
duce a more useful geometric picture relating the two after introducing the Weyl group in the
next section.

Having this basic correspondence with our earlier notion of roots established, we proceed with
classifying the representations of slp3,Cq by defining an ordering on weights of a representation.

Definition 5.6. Let µ1, µ2 be weights. We say µ1 is higher than µ2 (or equivalently, µ2 is
lower than µ1) if µ1 ´ µ2 can be written in the form

µ1 ´ µ2 “ aα12 ` bα23

where a, b P R such that a ě 0 and b ě 0.

If π is a representation of slp3,Cq, then a weight µ0 for π is said to be a highest weight if for
all weights µ of π, µ0 is higher than µ. We note that the relation of a weight being “higher” is
only a partial ordering since not all pairs are comparable.

Theorem 5.7 (Theorem of the Highest Weight). .

(1) Every irreducible representation of slp3,Cq has a highest weight.
(2) Two irreducible representations of slp3,Cq with the same highest weight are equivalent.
(3) The highest weight of every irreducible representation of slp3,Cq is a dominant integral

element.
(4) Every dominant integral element occurs as the highest weight of an irreducible representation

of slp3,Cq.

The full proof of this theorem can be found following Theorem 5.9 in [2]. What we take away
from this statement is that all irreducible finite-dimensional representations of slp3,Cq can be
indexed by pairs of non-negative integers, i.e., dominant integral elements. While the Theorem
of the Highest Weight does not provide much detail about constructing the representations
corresponding to each highest weight, it provides a useful means of indexing all such represen-
tations.

By Weyl’s unitary trick, we can use this information to classify the finite-dimensional repre-
sentations of SUp2, 1q by a similar correspondence. We will see later in our parameterization
of representations of SUp2, 1q that knowing the parameters associated to finite-dimensional
representations will be provide useful insight to determining which infinite-dimensional rep-
resentations are reducible. The weights corresponding to dominant integral elements will be
explored in more detail in the next section.

6. The Weyl Group and its Action on the Fundamental Weights Λi

Definition 6.1 (Definition 8.1 in [2]). A root system is a finite-dimensional real vector space
E with an inner product x¨, ¨y, together with a finite collection R of nonzero vectors in E
satisfying the following:

(1) The vectors in R span E.
(2) If α P R, then ´α P R.
(3) If α P R, then the only multiples of α in R are α and ´α.
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(4) If α, β in R, then Sαpβq P R where Sα is the linear transformation of E defined by

Sαpβq “ β ´ 2
xβ, αy

xα, αy
α for all β P E

(5) If α, β P R, then the quantity

2
xβ, αy

xα, αy

is an integer

The dimension of E is called the rank of the root system and the elements of R are called the
roots. If pE,Rq is a root system, then the Weyl group W of R is the subgroup of orthogonal
group of E generated by the reflections Sα for α P R.

In the context of the root space decomposition of slp3,Cq, our root system will be ph˚R,Φq and
the Weyl group W will be the group consisting of Sα for all α P Φ. The space h˚R will equal
SpanRtα12, α23u,i.e., the linear span of α12 and α23 with real coefficients. We now define the
necessary inner product x¨, ¨y on h˚R.

Let diagp3,Cq denote the space of 3ˆ 3 diagonal matrices with complex entries. We see that

h Ď diagp3,Cq – C3

Let x¨, ¨y denote the standard inner product on C3:

xw, zy “ w1z1 ` w2z2 ` w3z3 for all w, z P C3

We now restrict x¨, ¨y to h. We can now use x¨, ¨y to identify h with h˚. For any X P h, define
αX P h

˚ via

αXpHq “ xH,Xy for all H P H

Then the mapping X ÞÑ αX yields a conjugate-linear isomorphism of h onto h˚. In turn, this
yields an inner product x¨, ¨y on h˚ defined by

xαX , αY y “ xY,Xy for all X,Y P h

The desired R inner product on h˚R Ď h˚ is the restriction of x¨, ¨y to h˚R.

With this inner product, our definition of Sα for each α P Φ is thus a reflection in the line
through the origin in h˚R perpendicular to α. This is an isometry of h˚R relative to x¨, ¨y and
hence

xSαpβ1q, Sαpβ2qy “ xβ1, β2y for all β1, β2 P h
˚
R

We now regard a weight α for pπ, V q as a nonzero element of h with the property that there
exists a nonzero v in V such that

πpHqv “ xH,αyv for all H P h

For example, the elements α12, α23, and α13 of h˚ are identified with the following elements of
h:

α12 “

¨

˝

1
´1

0

˛

‚ α23 “

¨

˝

0
1
´1

˛

‚ α12 ` α23 “

¨

˝

1
0
´1

˛

‚
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We now have the weights living in h instead of h˚, and since the roots are just weights for the
adjoint representation, we also have identified the roots with elements of h. Now with the inner
product defined as above, we can determine the geometric relationship between the roots in Φ
and the rest of the weights discussed in Section 5 by calculating

Sαpλq “ λ´ 2
xα, λy

xα, αy
α for all λ P h˚R

for Sα PW .

The Weyl group W for slp3,Cq is generated by reflections S1, S2 over the simple roots, tα12, α23u

where S1 “ Sα12 and S2 “ Sα23 . From here on, we will refer to α12 as α1 and α23 as α2. We can
calculate the reflections S1 and S2 for each of the roots tα1, α2, α1`α2,´α1,´α2,´α1´α2u “ Φ.
We note that Si PW are linear maps, so we need only calculate Sipαjq for 1 ď i, j ď 2:

S1pα1q “ ´α1

S1pα2q “ α1 ` α2

S2pα1q “ α1 ` α2

S2pα2q “ ´α2

Given that α1 and α2 are the simple roots of Φ`, we define the fundamental weights Λ1,Λ2 P

h˚ for this ordering by

2xΛi, αjy

xαj , αjy
“ δij 1 ď i, j ď 2

where δij is the Kronecker delta function. Note that the fundamental weights are thus equivalent
to the weights p0, 1q and p1, 0q from the previous section, yielding a particularly nice basis for
h˚R. With this in mind, we note we have the following expressions for α1 and α2 in terms of Λ1

and Λ2:

(5) α1 “ 2Λ1 ´ Λ2 and α2 “ 2Λ2 ´ Λ1

These identities allow us to translate easily from the roots α1, α2 to the fundamental weights
Λ1,Λ2 which can both be used as a basis for the 2-dimensional vector space h˚R. From the
definition of fundamental weights, we can also easily calculate SipΛjq for 1 ď i, j ď 2.

S1pΛ1q “ Λ1 ´ δ11α1 “ Λ1 ´ α1

S2pΛ1q “ Λ1 ´ δ12α2 “ Λ1

S1pΛ2q “ Λ2 ´ δ21α1 “ Λ2

S2pΛ2q “ Λ2 ´ δ22α2 “ Λ2 ´ α2

These computations involving Weyl reflections of roots and weights will prove useful later in
our discussion of the reducibility of the principal series representations. Also we have developed
a better understanding of the geometric structure of h˚R when considered with a Weyl-invariant
inner product. The following diagram depicts h˚R, showing the relative lengths and angles
between the roots and the fundamental weights as determined by the inner product discussed
above.
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Λ1

Λ2

α1 = 2Λ1 − Λ2

α2 = 2Λ2 − Λ1 h∗
R

We note that the pairs of the discrete points in the diagram correspond to dominant integral
weights, i.e., non-negative integer combinations of the fundamental weights. Thus they are in
one-to-one correspondence with the finite dimensional representations of slp3,Cq discussed in
the last section.

7. Restricted Root Space Decomposition

In the case of a complex semisimple Lie algebra g, the root space decomposition allowed us to
break up g into 1-dimensional subalgebras gλ along with the Cartan subalgebra. In an effort
to split our real semisimple Lie group SUp2, 1q into more manageable subgroups, we seek a
decomposition of its real semisimple Lie algebra sup2, 1q similar to the root space decomposition
in the complex case. Before we can proceed, we must define a few terms.

Definition 7.1. Let g be a real of complex Lie algebra g. If x and y are in g, then it is
meaningful to define

Bpx, yq “ tr padx ad yq

Thus B is a symmetric bilinear form on g known as the Killing form on g.

Definition 7.2. An involution θ is an automorphism of a Lie algebra such that θ2 “ 1. An
involution θ of a real semisimple Lie algebra g such that the symmetric bilinear form

Bθpx, yq “ ´Bpx, θpyqq

is positive definite is called a Cartan involution. Bθ will then define an inner product on g.
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The existence of a Cartan involution for any real semisimple Lie algebra is not trivial. This result
is Corollary 6.18 in [7]. In addition, while there may exist more than one Cartan involution
for a real semisimple Lie algebra g, it is also shown (Corollary 6.19) that the Cartan involution
is unique up to inner automorphisms of g, i.e., conjugation by elements g P G, the Lie group
associated to g.

For any Cartan involution θ of g, the fact that θ2 “ 1 and θ is linear gives an eigenspace
decomposition

g “ k‘ p

of g into `1 and ´1 eigenspaces. Since θ preserves the bracket, it follows that

rk, ks Ď k, rk, ps Ď p, rp, ps Ď p

The decomposition g “ k ‘ p is referred to as a Cartan decomposition of g. Let a be a
maximal abelian subspace in p, i.e., ra, as “ 0 and if ã Ď p is a subalgebra such that a Ĺ ã,
then ã is not abelian. The dimension of a is the real rank of the Lie algebra g and of its
corresponding Lie group G.

By Lemma 6.27 in [7], we know that for a Cartan involution θ, padXq˚ “ ´ ad θX for all X P g
where the adjoint p¨q˚ is relative to the inner product Bθ of Definition 7.2. It follows that the
members of adpaq form a commuting family of self-adjoint transformations on g because for all
H P a, padHq˚ “ ´ ad θH “ ´ adp´Hq “ adH. Therefore adpaq can be simultaneously diago-
nalized with real eigenvalues, so we can write g as the direct sum of simultaneous eigenspaces.
For each linear function λ P a˚, we define

gλ “ tx P g : rH,xs “ λpHqx, for all H P au

If λ ‰ 0 and gλ ‰ t0u, we say that λ is a restricted root of g and the corresponding subspace
gλ of g is a restricted root space. Unlike in the case of roots for a complex semisimple Lie
algebra, the gλ are not necessarily one-dimensional.

Proposition 7.3. We have the following restricted root space decomposition

g “ g0 ‘
ÿ

λPΦ

gλ

Moreover, the restricted roots and their root spaces satisfy the following

(i) rgλ, gµs Ď gλ`µ
(ii) θgλ “ g´λ and λ P Φ implies ´λ P Φ

(iii) gλ and gµ are orthogonal with respect to Bθ when λ ‰ µ
(iv) g0 “ a ‘ m, where m “ Zkpaq “ tk P k : ra, ks “ 0 for all a P au, and the sum is an

orthogonal sum

The proof of this proposition can be found in Chapter 10.2 of [5]. Now define an ordering on a˚

and hence a notion of positivity for functionals in a˚. Let Φ` be the set of positive restricted
roots so defined. We set

19



n “
ÿ

λPΦ`

gλ

The three subalgebras k, a, and n yield an important decomposition of g.

Theorem 7.4 (Iwasawa Decomposition).

The Lie algebra g decomposes as a vector space direct sum

g “ k‘ a‘ n

In particular, a is abelian, n is nilpotent and k is the Lie algebra of a compact Lie group.

Nilpotent means that for some n P N, gn “ 0 where g0 “ g and gi`1 “ rg, gis. To prove the
above decomposition, we must show that each pair of components is disjoint and then show that
any element Y P g can be written in the form Y “ k ` a` n for k P k, a P a, and n P n. First
we note that a Ă g0, and g0 X n “ 0, so a` n is a direct sum. By property (ii) of Proposition
7.3, it follows that kX n “ 0. Since a is abelian, we know kX a Ă Zkpaq “ m, however by (iv),
we know a X m “ 0, so we conclude k X a “ 0. Thus we have shown that k ` a ` n is a direct
sum.

This sum is all of g because, from Proposition 7.3, we can write any element Y P g in the form
Y “ pH ` Zq `

ř

λPΦXλ with H P a, Z P m, and Xλ P gλ. Reorganizing gives

Y “ Z `
ÿ

λPΦ`

pX´λ ` θX´λq

loooooooooooooomoooooooooooooon

Pk

` H
loomoon

Pa

`
ÿ

λPΦ`

pXλ ´ θX´λq

loooooooooomoooooooooon

Pn

which establishes the Iwasawa decomposition for any Y P g.

The Iwasawa decomposition of the Lie algebra g gives rise to a global decomposition of the Lie
group G into subgroups K, A, and N via the exponential map as follows.

Theorem 7.5 (Global Iwasawa Decomposition - Theorem 5.12 in [6]). If G is a connected,
linear semi-simple Lie group, then there exist analytic subgroups K, A, N such that

pk, a, nq ÞÑ kan from K ˆAˆN Ñ G

is a diffeomorphism, where the Lie algebras of K, A, and N are k, a, and n, respectively.
Moreover, K is compact, A is abelian, and N is nilpotent.

A Lie group N is nilpotent if it is connected and its Lie algebra n is nilpotent. Although it is true
that exppkq “ K, exppaq “ A, and exppnq “ N in our particular situation (see Corollary VI.4.4
in [3] and Corollary 4.48 in [7]), the proof of the global Iwasawa decomposition is non-trivial.

Now we will discuss the above theory for the case of sup2, 1q. Let θ be the Cartan involution
of g “ sup2, 1q given by θpxq “ ´xT for x P sup2, 1q, i.e., the involution of an element x is its
negative conjugate transpose. Consider the following basis B for sup2, 1q:
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H “

¨

˝

0 0 1
0 0 0
1 0 0

˛

‚ P1 “

¨

˝

0 0 ´i
0 0 0
i 0 0

˛

‚ P2 “

¨

˝

0 0 0
0 0 1
0 1 0

˛

‚ P3 “

¨

˝

0 0 0
0 0 i
0 ´i 0

˛

‚

Z “

¨

˝

i 0 0
0 ´2i 0
0 0 i

˛

‚ K1 “

¨

˝

´i 0 0
0 0 0
0 0 i

˛

‚ K2 “

¨

˝

0 ´1 0
1 0 0
0 0 0

˛

‚ K3 “

¨

˝

0 i 0
i 0 0
0 0 0

˛

‚

We can therefore partition the basis vectors into their respective places in either k or p based
on their eigenvalues under the mapping θ.

θpHq “ ´H θpP1q “ ´P1 θpP2q “ ´P2 θpP3q “ ´P3

θpZq “ Z θpK1q “ K1 θpK2q “ K2 θpK3q “ K3

Thus we have k “ RZ ‘ RK1 ‘ RK2 ‘ RK3 and p “ RH ‘ RP1 ‘ RP2 ‘ RP3.

We are given some choice involved with which maximal abelian subspace a of p we consider.
To follow the convention of [9], we choose

a “ SpanRtHu “ SpanRt

¨

˝

0 0 1
0 0 0
1 0 0

˛

‚u

By Proposition 7.3, we have that the zero eigenspace, g0 “ a ‘ m where m “ Zkpaq “ SpanZ.
We can build the rest of the restricted root spaces using the above basis vectors. We define a
linear form λ on a by λpHq “ 1. Therefore

g2λ “ RpP1 ´K1q g´2λ “ RpP1 `K1q

gλ “ RpP2 ´K2q ‘ RpP3 ´K3q g´λ “ RpP2 `K2q ‘ RpP3 `K3q

Thus our restricted root space decomposition of g is given by

g “ a‘m
loomoon

g0

‘ gλ ‘ g´λ ‘ g2λ ‘ g´2λ

The positive restricted roots for sup2, 1q are Φ` “ tλ, 2λu, giving that

n “ RpP1 ´K1q ‘ RpP2 ´K2q ‘ RpP3 ´K3q

Thus since clearly a “ RH, we have an explicit Iwasawa decomposition of sup2, 1q, where
k “ RZ‘RK1‘RK2‘RK3. This gives rise to a KAN decomposition of the group SUp2, 1q by
Theorem 7.5. In addition, considering the subalgebra s “ m‘ a‘ n, we describe an important
subgroup S “MAN of SUp2, 1q which will be instrumental in determining a continuous spec-
trum of representations of SUp2, 1q. These representations will be referred to as the principal
series and are to be discussed in detail in the next section.
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8. Induced Representations and Principal Series

We will construct the principal series for G “ SUp2, 1q following usual conventions of inducing
representations from a parabolic subgroup of G.

Definition 8.1 (A.1.14 [4]). Suppose H is a closed subgroup of G. Let pπ, V πq be a continuous
representation of H into a Hilbert space V π and let C0pG,V

πq denote the space of continuous
functions f : GÑ V π such that the support of f is contained in a set CH where C is a compact
set in G. Then the induced representation Φ “ indGH π is a representation of G acting on
the space

V Φ “ tf P C0pG,V
πq : fpghq “ πphq´1fpgq for all h P Hu

by

Φpgqpfpxqq “ fpg´1xq

The representation Φ “ indGH π of G on V Φ extends via continuity to a representation of G on
the completion of V Φ in its own natural topology. This extended representation is also denoted
as indGH π (A.1.14 [4]). This means that the group acts on the induced representation space by
the left regular representation.

The definition given here is a general form of induction, and there are a number of ways
of customizing the process based on the desired application. We will be using a version of
normalized induction to ensure that if our representation π of the subgroup H is unitary,
then the the induced representation Φ “ IndGHpπq is unitarizable. For more on normalized
induction, see pages 130-131 in [1], as well as the discussion below.

Definition 8.2 (Pg.132 [6]). A parabolic subgroup ofG is a closed subgroup containing some
conjugate of MAN , where A and N arise from a particular choice of a P p when constructing
the Iwasawa decomposition, and M “ ZKpAq. The conjugates of MAN are called minimal
parabolic subgroups.

G “ SUp2, 1q is an example of a semisimple Lie group of real rank one, meaning any abelian
subalgebra a Ď p has dimension one. For such groups, we only need to consider one fixed
minimal parabolic subgroup

S “MAN

for use in creating the necessary induced representations of G. To create the desired repre-
sentations, start from an irreducible unitary representation pσ, V σq of M , necessarily finite-
dimensional because M is compact, and a member ν of pa˚qC. We define a representation
pσ b eν b 1q of S by

pσ b eν b 1qpmanq “ eν log aσpmq

where the map log : A Ñ a is the inverse of exp : a Ñ A described earlier so that log a P a for
any a P A. Ordinary induction from S “MAN would be given by

indGMAN pσ b e
ν b 1q.

However, in our situation, the normalized induction from σb eν b 1 on MAN to G is given by

πσ,ν “ IndGMAN pσ b e
ν b 1q “ indGMAN pσ b e

ν`ρ b 1q
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where ρ “ 1
2

ř

λPΦ`pdim gλqλ, i.e., the half sum of the positive restricted roots (counting multi-
plicities). As noted earlier, this slight alteration of the definition of the induced representation
will ensure that when σb eν b 1 is a unitary representation of MAN , then IndGMAN pσb e

ν b 1q
is a unitary representation of G. Thus the normalized induced representation space initially
consists of all f P C0pG,V

σq such that

fpxmanq “ e´pρ`νq log aσpmq´1fpxq

The action of Φ “ πσ,ν is given by left-translation, i.e., πσ,νpgqfpxq “ fpg´1xq. An inner
product for f, g P V Φ is defined by

(6) xf, gy “

ż

K
xfpkq, gpkqyV σdk

where x¨, ¨yV σ denotes the inner product on V σ. This pre-Hilbert space structure provides the
“natural” topology for V Φ. By taking the completion with respect to the norm arising from the
inner product, we have the Hilbert space Hσ,ν which is our normalized induced representation
space. These representations pπσ,ν , Hσ,νq are unitary when ν P ia˚ and we say that they
comprise the unitary principal series (Pg. 38 [8]). We refer to this realization of the
principal series as the induced picture. By restricting our induced picture to K, we have the
initial representation representation space

tf P CpK,V σq : fpkmq “ σpmq´1fpkqu

with inner product defined as in (6). Taking the completion of this space we have the compact
picture realization of the principal series representation which we denote by Hσ. If g P G
decomposes as KMAN as

g “ κpgqµpgqeHpgqn

then the action is

πσ,νpgqfpkq “ e´pν`ρqHpg
´1kqσpµpg´1kqq´1fpκpg´1kqq

as given in equation (7.3a) and the subsequent formula in [6]. The action of πσ,ν in the com-
pact picture is significantly more complicated than in the induced picture, but since Hσ is
independent of ν, it is easier to use the compact picture to study dependencies on ν.

The principal series described above, with ν P ia˚, were constructed to give a continuous series
of unitary representations of G. We note that by relaxing the condition that ν is imaginary to a
general ν P pa˚qC, we get the full nonunitary principal series of representations of G. While
we are concerned with finding the unitary representations of G “ SUp2, 1q, we will need to
work with the full principal series since there exist unitary representations beyond the unitary
principal series which occur as subrepresentations and subquotients in the nonunitary principal
series representations. These will include the critically important discrete series representations
to be discussed in the next section.

Let G “ SUp2, 1q. The subgroups M and A can be realized by the Iwasawa decomposition
discussed in the previous section and are given by
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M “ texppθZq : 0 ď θ ď 2πu “
 

¨

˝

eiθ 0 0
0 e´2iθ 0
0 0 eiθ

˛

‚: 0 ď θ ď 2π
(

A “ texpptHq : t P Ru “ t

¨

˝

cosh t 0 sinh t
0 1 0

sinh t 0 cosh t

˛

‚: t P Ru

We identify pa˚qC with the set of complex numbers by identifying a functional ν with the
complex number νpHq “ 1. Let ρ be the half sum of the positive restricted roots counting
multiplicity, therefore given by

ρ “
1

2
rpdim gλqλ` pdim g2λq2λs “

1

2
p2λ` 2λq “ 2λ

Thus since we have chosen λpHq “ 1, we have that ρpHq “ 2. Since M is one-dimensional,
abelian, we know that its irreducible unitary representations are one-dimensional acting on C
and parameterized by n P Z. The action of each σn P xM is multiplication by scalars given by

σnpmθq “ σnp

¨

˝

eiθ 0 0
0 e´2iθ 0
0 0 eiθ

˛

‚“ einθ

Thus for each σn P xM and complex number ν we have a one-dimensional representation pσn b
eνb1q of the minimal parabolic subgroup MAN which we induce on the group G. The induced
representation space of πσn,ν “ IndGMAN pσn b e

ν b 1q initially consists of

tf P C0pG,Cq : fpxmanq “ e´pρ`νq log aσnpmq
´1fpxqu

or equivalently (where log a “ tH)

tf P C0pG,Cq : fpxmθatnq “ e´p2`νqte´inθfpxqu

We form the full representation space by completion. Thus the nonunitary principal series repre-
sentations for SUp2, 1q are pπσn,ν , Hσ,νq for n P Z and ν P C where πσn,νpgqfpxq “ fpg´1xq. As
discussed in the general theory, when ν is imaginary, the representations pπσn,ν , Hσ,νq comprise
the unitary principal series.

If g P G, we write g “ κpgqµpgqeHpgqnpgq with κpgq P K, µpgq P M , Hpgq P A, and npgq P N .
Note this is ambiguous because M Ď K “ Up2q “MSUp2q. Thus we take κpgq P SUp2q, which
we realize as the matrices

ˆ

u 0
0 1

˙

for u “

ˆ

z1 ´z2

z2 z1

˙

P SUp2q

Then
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(7) κpgq

¨

˝

1
0
1

˛

‚“

¨

˝

z1 ´z2 0
z2 z1 0
0 0 1

˛

‚

¨

˝

1
0
1

˛

‚“

¨

˝

z1

z2

1

˛

‚“

ˆ

z
1

˙

with z “ pz1, z2q P S
3 “ tz P C2 : |z1| ` |z2| “ 1u

Now moving to the compact picture, for f P L2pS3q, we define

fσn,νpgq “ µpgq´nHpgq´2´νfpκpgqq

Therefore the group action in the compact picture is

πσn,νpgqfpkq “ fσn,νpg
´1kq “ µpg´1kq´nHpg´1kq´2´νfpκpg´1kqq

This construction is standard for determining the nonunitary principal series representations.
We will now consider an alternative construction of the principal series due to Nolan Wallach
in [9]. The advantage of this realization of principal series will become apparent in the next sec-
tion when we consider the problem of determining reducibility of principal series representations
and the embedding of discrete series representations in the nonunitary principal series.

Following Section 7 in [9], let g P SUp2, 1q act on S3 “ tz P C2 : |z| “ 1u as follows:

g ¨ z “ pxz, cy ` dq´1pAz ` bq, g “

ˆ

A b
c˚ d

˙

where A is a 2 ˆ 2 matrix and x¨, ¨y is the usual inner product on C2. Set hpg, zq “ d ´ xz, by
for z P S3, g P SUp2, 1q. If k1, k2 P C and k1 ´ k2 P Z, define

πk1,k2pgqfpzq “ hpg, zqk1hpg, zq
k2
fpg´1 ¨ zq

for f P C8pS3q, g P SUp2, 1q. Then πk1,k2pgq extends to a bounded operator on L2pS3q “ H and
pπk1,k2 ,Hq defines a continuous representation of G for all pk1, k2q P C2 such that k1 ´ k2 P Z.
Note that the πk1,k2 representations are analogous to the compact picture discussed above where
we restrict from f P C8pGq to f P C8pS3q.

Now let Λ1 and Λ2 be the fundamental weights as defined in (6). We will say that Λ P h˚ is
G-integral if and only if Λ “ k1Λ1 ` k2Λ2 for ki P C, and k1 ´ k2 P Z. We will now denote
the representations πk1,k2 by πΛ where Λ is G-integral. The full induction procedure working
through the induced picture to the compact picture given above is developed for πΛ in Section
7 of [9].

We turn now to finding an explicit correspondence between these two versions of the principal
series. First, we parameterize the quasi-characters of Cˆ “ C r t0u. We use the polar decom-
position z “ ma with m P S1 “ tz P C : |z| “ 1u and a ą 0, a P R. Then m “ z{|z| and a “ |z|.
Note that m “ m´1. Thus if k1, k2 P C and k1 ´ k2 P Z, then

zk1zk2 “ p
z

|z|
qk1p

z

|z|
qk2 |z|k1`k2

“ mk1m´k2ak1`k2

If we write ´n “ k1 ´ k2 and k1 ` k2 “ ´2´ ν with ν P C, then

zk1zk2 “ m´na´2´ν
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Comparing the actions of πσn,ν and πΛ “ πk1,k2 when restricted to the compact picture, we
have

πσn,νpgqfpkq “ µpg´1kq´nHpg´1kq´2´νfpκpg´1kqq

πk1,k2pgqfpzq “ hpg, zqk1hpg, zq
k2
fpg´1 ¨ zq

If f P C8pS3q, then thinking of µpg´1kq´nHpg´1kq´ν “ ma as an element of Cˆ in polar
coordinates and fpzq “ fpkq with the relationship between k and z given in (7), we have

hpg, zq “ µpg´1kqHpg´1kq

Thus we have the natural correspondence between πσn,ν and πΛ given by

(8) k1 ´ k2 “ ´n and ν “ ´k1 ´ k2 ´ 2.

With this result, we can translate results, especially those regarding reducibility, found through
the πΛ realization to the usual principal series representations πσn,ν

9. Discrete Series and Its Embedding

Theorem 9.1 (Godement, pg 69 in [8]). For an irreducible unitary representation π of a
unimodular Lie group G, the following three conditions are equivalent:

(a) Some non-zero matrix coefficient is in L2pGq.
(b) All matrix coefficients are in L2pGq.
(c) π is equivalent with a direct summand of the right regular representation of G on L2pGq.

A representation satisfying these three equivalent conditions is said to be in the discrete series
of G.

Theorem 9.2 (Theorem 12.20 in [6]). A linear connected semisimple group G has discrete
series representations if and only if rankG “ rankK.

Note the condition rankG “ rankK is equivalent to G having a compact Cartan subgroup.
For G “ SUp2, 1q, we have the Cartan subalgebra

t “ RZ ‘ RK1 “ tidiagpt1, t2, t3q : t1, t2, t3 P R and t1 ` t2 ` t3 “ 0

which corresponds to the Cartan subgroup

T “ tdiagpz1, z2, z3q : |z1| “ |z2| “ |z3| “ 1 and z1z2z3 “ 1u

We have that T Ď K “ Up2q where K is the maximal compact subgroup of G, so we have
that T is, in fact, a compact Cartan subgroup, guaranteeing the existence of discrete series for
SUp2, 1q.

The discrete series are named for the fact that these representations are precisely those ir-
reducible unitary representations of G which have positive Plancherel measure. The discrete
series were classified for any semisimple G by Harish-Chandra in the 1950-60s. Under the
condition that they exist for linear, connected, semi-simple G (Theorem 9.2), the series of dis-
crete representations are identified and indexed by particular linear functionals λ acting on the
compact Cartan subalgebra. Each λ defines an “infinitesimal character” χλ of a discrete series
representation πλ. The index λ is called the Harish-Chandra parameter and corresponds to
the discrete series representation πλ. For these results and more background on existence of
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discrete series, see Theorem 9.20 in [6]. In fact, by Theorem 12.21 in [6], the discrete series
specified by Theorem 9.20 exhaust all discrete series representations of G up to equivalence.

For our purposes, we would like to determine the embedding of such discrete series represen-
tations in the non-unitary principal series. In other words, we want to the determine where
principal series reduce to discrete series and in particular, to which discrete series representa-
tion in terms of their Harish-Chandra parameters. This involves first determining the points at
which the nonunitary principal series is reducible. We return to G “ SUp2, 1q.

Lemma 9.3 (Lemma 7.1’ in [9]). The representation πΛ of G is reducible if and only if Λ is
integral, meaning Λ “ k1Λ1 ` k2Λ2 where k1, k2, P Z and Λ ‰ ´ρ where ρ “ α1 ` α2 is the
half sum of roots of slp3,Cq as discussed in Section 4.

There are three types of discrete series which embed in the nonunitary principal series, namely
the holomorphic, the antiholomorphic, and the nonholomorphic discrete series. A full
description of these three classes, including their respective representation spaces is given on
pg. 183 of [9] and more explicitly discussed on pg. 481-482 of [10].

We will rewrite pD`Λ , V
Λ
` q for the holomorphic discrete series, pD´Λ , V

Λ
´ q for the antiholomor-

phic, and pDΛ,W
Λq for the nonholomorphic. From the perspective of these discrete series

representations being subspaces of πΛ, we also could write D`Λ pgq “ πΛpgq
ˇ

ˇ

V Λ
`

for holomorphic,

D´Λ pgq “ πΛpgq
ˇ

ˇ

V Λ
´

for antiholomorphic, and DΛpgq “ πΛpgq
ˇ

ˇ

WΛ for nonholomorphic. Further,

if π is a representation of G, then we say that π Ă πΛ if π is infinitesimally equivalent with a
subquotient of πΛ. With this notion of embedding, we have the following result.

Theorem 9.4 (Lemma 7.10 in [9]). If Λ “ k1Λ1 ` k2Λ2, for ki ě 0 and ki P Z, then

(1) D`S1S2pΛ`ρq´ρ
Ă πµ if and only if µ “ S1pΛ` ρq ´ ρ, or µ “ S1S2pΛ` ρq ´ ρ.

(2) D´S2S1pΛ`ρq´ρ
Ă πµ if and only if µ “ S2pΛ` ρq ´ ρ, or µ “ S2S1pΛ` ρq ´ ρ.

(3) DS1S2S1pΛ`ρq´ρ Ă πµ if and only if µ “ S1S2S1pΛ` ρq ´ ρ.

where S1, S2 are the Weyl reflections over the simple roots α1 and α2, respectively.

This lemma describes the full embedding of the discrete series

Ĝd “ tD
`

S1S2pΛ`ρq´ρ
, D´S2S1pΛ`ρq´ρ

, DS1S2S1pΛ`ρq´ρu

in the nonunitary principal series.

We have worked thus far to construct the unitary principal series as well as determined the
points of the nonunitary principal series that reduce to unitary representations, the discrete
series. We note that the discrete series are named as such, since they are precisely those points

of the unitary dual pG that have positive Plancherel measure. Thus by exhausting the discrete
series and the unitary principal series we have sufficiently many representations to discuss the
operator-valued Fourier transform for G “ SUp2, 1q and its respective Plancherel Inversion
formula. The determination of these representations was necessary since all form the support
of the Plancherel measure, which has a fundamental role in the Inversion formula.
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10. Further Work

We would like to further investigate how irreducible representations are embedded in the re-
ducible nonunitary principal series. By the remark before Lemma 7.10 in [9], if πΛ is irreducible
and if πΛ Ă πµ for some µ, then µ “ S0pΛ ` ρq ´ ρ. We interpret this result to mean that if
we know an irreducible component πΛ occurs at some principal series πµ, we can determine the
principal series in question by applying the equation above.

Thus suppose µ “ k1Λ1 ` k2Λ2 for k1, k2 P Z such that pk1, k2q ‰ p´1. ´ 1q is some reducible
principal series (see Lemma 9.3). We calculate S0pµ` ρq ´ ρ and write our answer in terms of
the fundamental weights Λ1, Λ2 using our established relationship between roots and weights
by Weyl reflections, so that we may consider the parameters of the irreducible component πΛ.
Note that we use the fact that ρ “ Λ1 ` Λ2 below which is easily justified by ρ “ α1 ` α2 “

p2Λ1 ´ Λ2q ´ p2Λ2 ´ Λ1q “ Λ1 ` Λ2 from (5).

Λ “ S0pµ` ρq ´ ρ “ S1S2S1pk1Λ1 ` k2Λ2 ` Λ1 ` Λ2q ´ ρ

“ S1S2ppk1 ` 1qS1pΛ1q ` pk2 ` 1qS1pΛ2qq ´ ρ

“ S1S2ppk1 ` 1qpΛ1 ´ α1q ` pk2 ` 1qΛ2q ´ ρ

“ S1ppk1 ` 1qpS2pΛ1q ´ S2pα1qq ` pk2 ` 1qS2pΛ2qq ´ ρ

“ S1ppk1 ` 1qpΛ1 ´ pα1 ` α2qq ` pk2 ` 1qpΛ2 ´ α2qq ´ ρ

“ ppk1 ` 1qpS1pΛ1q ´ S1pα1 ` α2qq ` pk2 ` 1qpS1pΛ2q ´ S1pα2qqq ´ ρ

“ ppk1 ` 1qppΛ1 ´ α1q ´ α2q ` pk2 ` 1qpΛ2 ´ pα1 ` α2qqq ´ ρ

“ ppk1 ` 1qpΛ1 ´ pα1 ` α2qq ` pk2 ` 1qpΛ2 ´ pα1 ` α2qqq ´ pΛ1 ´ Λ2q

“ k1Λ1 ` k2Λ2 ´ pk1 ` 1` k2 ` 1qpα1 ` α2q

“ k1Λ1 ` k2Λ2 ´ pk1 ` k2 ` 2qp2Λ1 ´ Λ1 ` 2Λ1 ´ Λ2q

“ k1Λ1 ` k2Λ2 ´ pk1 ` k2 ` 2qpΛ1 ` Λ2q

“ ´pk2 ` 2qΛ1 `´pk1 ` 2qΛ2

Thus we have π´pk2`2q,´pk1`2q Ă πk1,k2 . Translating this result to our other realization of
principal series via (8), we have that

πσpk2´k1q
,pk1`k2`2q Ă πσpk2´k1q

,p´k1´k2´2q.

This implies that πσn,´ν Ă πσn,ν which for a number of reasons seems odd. To check the validity
of this calculation and its implications, we have to look closer at the discussion of embedding
and the notion of infinitesimal equivalence as discussed on pg 185 of [9]. Beyond clarifying the
meaning of this embedding result, we would also like to determine how the Harish-Chandra
parameter which indexes the discrete series relates to the subrepresentations and subquotients
we have identified in the nonunitary principal series in Theorem 9.4.

We have cited a result identifying the reducible principal series (Lemma 9.3) without proof. This
can supposedly be confirmed by considering the representations of SUp2q which are indexed
by their dimension and are given explicitly on pg 185 in [9]. The representations of SUp2q
also provide clearer understanding of the principal series representations by determining a
reasonable basis for each Hσn representation space in the compact picture. This would be
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helpful in our analysis of how the principal series representations reduce as it would allow an
explicit description of subrepresentation spaces corresponding to discrete series.

While the results we have discussed give a parameterization of the irreducible unitary represen-
tations that support the Plancherel measure for SUp2, 1q, we have not explicitly put them in the
context of the Plancherel Inversion formula. To do this requires a careful understanding of the
operator-valued Fourier transform, which is built from the matrix coefficients of the irreducible
unitary representations of the principal and discrete series. We also note that we have not given

the formula for the Plancherel measure on pG which appears in the Plancherel theorem for G.
This can be found in a general form for linear connected groups G of real rank 1 in Theorem
13.5 in [6].
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