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A B S T R A C T

Habitat loss is a primary cause of loss of biodiversity but conserving

habitat for species presents challenges. Land parcels differ in their

ability to produce returns for landowners and landowners may have

private information about the value of the land to them. Land

parcels also differ in the type and quality of habitat and the spatial

pattern of land use across multiple landowners is important for

determining the conservation value of parcels. This paper analyzes

the relative efficiency of simple voluntary incentive-based policies

in achieving biodiversity conservation objectives. This topic is

important not just for biodiversity conservation but for any effort to

provide a public good requiring coordination across multiple

decision-makers who have some degree of private information. We

develop a method that integrates spatially explicit data, an

econometric model of private land-use decisions, landscape

simulations, a biological model of biodiversity as a function of

landscape pattern, and an algorithm that estimates the set of

efficient solutions. These methods allow us to simulate landowner

responses to policies, measure the consequences of these decisions

for biodiversity conservation, and compare these outcomes to

efficient outcomes to show the relative efficiency of various policy
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1. Introduction

Land-use change is the leading driver of biodiversity loss in terrestrial ecosystems and is expected
to remain so in the future (Millennium Ecosystem Assessment, 2005; Sala et al., 2000; Wilcove et al.,
2000). Much of the habitat important for biodiversity conservation occurs on privately owned land.
One study found that 70% of species listed under the U.S. Endangered Species Act (ESA) depend on non-
federal land, most of which is privately owned, for the majority of their habitat (Natural Heritage Data
Center Network, 1993). Voluntary incentives are the most common mechanism used to encourage
conservation on privately owned lands. For example, the Conservation Reserve Program (CRP) and the
Wildlife Habitat Incentives Program (WHIP) provide payments to private landowners in exchange for
land uses consistent with conservation objectives. Conservation easements are the dominant
mechanism used by land trusts and conservation organizations for habitat preservation (Kiesecker
et al., 2007; Plantinga, 2007; Rissman et al., 2007).

In this paper, we examine the efficiency of policies for species conservation using voluntary
agreements with private landowners. We combine econometric models of landowner decisions with
biological models that predict species persistence as a function of the spatial pattern of land use. In
particular, we use observed land-use decisions to specify an econometric model of land-use choice and
develop a method to recover the distributions of landowners’ willingness-to-accept (WTA)
conservation payments in exchange for using their land for habitat conservation. The method we
develop is generally applicable when parcel-level land-use decisions are observed, but information on
the net returns to alternative land uses is only available at a coarser spatial scale such as a county
rather than an individual parcel.

We then use estimated WTA to simulate landowner responses to a range of incentive-based habitat
conservation policies. We assume landowners know their own WTA, but regulators interested in
conservation know only the probability distribution of landowners’ WTAs. Simulated land-use
patterns are used as inputs into a spatially explicit biological model to generate a biological score,
which is based on the probabilities that a set of terrestrial species of conservation concern will persist
on the landscape. We then compare outcomes under incentive-based policies with outcomes of an
efficient solution that maximizes the biodiversity score at each level of economic opportunity cost.
The difference in biodiversity scores between the landscapes generated by the incentive-based
policies and the efficient solution indicates the potential gains in species conservation from gathering
information on landowner-specific WTA and spatially optimizing conservation efforts.

Our analysis connects two strands of literature on habitat conservation methods and policies.
Systematic conservation planning (SCP; Margules and Pressey, 2000) involves choosing the collection
of sites that maximize species conservation subject to a constraint on the total area conserved or total
conservation budget allotted (e.g., Camm et al., 1996; Church et al., 1996; Csuti et al., 1997;
Kirkpatrick, 1983; Vane-Wright et al., 1991). Extensions of the basic optimization problem
incorporate land costs (e.g., Ando et al., 1998; Balmford et al., 2000; Polasky et al., 2001),
considerations of compactness or contiguity (e.g., Fischer and Church, 2003; Onal and Briers, 2003),
and dynamics (e.g., Costello and Polasky, 2004; Meir et al., 2004; Newburn et al., 2006; Strange et al.,
2006). As it has matured, the SCP literature has incorporated more complex analysis of spatial patterns
that affect species persistence, including habitat fragmentation and dispersal ability (e.g., Cabeza and

approaches. We find substantial differences in biodiversity conser-

vation scores generated by simple voluntary incentive-based

policies and efficient solutions. The performance of incentive-based

policies is particularly poor at low levels of the conservation budget

where spatial fragmentation of conserved parcels is a large concern.

Performance can be improved by encouraging agglomeration of

conserved habitat and by incorporating basic biological informa-

tion, such as that on rare habitats, into the selection criteria.

� 2010 Elsevier B.V. All rights reserved.
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Moilanen, 2003; Moilanen et al., 2005; Jiang et al., 2007; Nalle et al., 2004; Nicholson et al., 2006;
Polasky et al., 2005, 2008). Significantly, the SCP literature has not addressed issues of conservation
plan implementation on landscapes with privately owned land and asymmetric information between
the landowners and the regulating agency. In theory, an optimal solution could be successfully
implemented by a conservation agency that had complete information and the power to dictate land-
use decisions. This description may be a reasonable characterization of the problem faced by public
land managers, but it is unrealistic when applied to a landscape with a significant number of private
landowners.

A second strand of the habitat conservation literature examines the use of incentive-based policies
for voluntary habitat conservation on privately owned land. Unlike the SCP literature, asymmetric
information is a central element in these studies. The literature includes analyses of payments under
fixed price contracts, conservation auctions, and regulatory approaches (Connor et al., 2008; Feng,
2007; Ferraro, 2008; Innes et al., 1998; Latacz-Lohmann and Van der Hamsvoort, 1997; Polasky, 2001;
Polasky and Doremus, 1998; Smith and Shogren, 2002; Stoneham et al., 2003; Kirwan et al., 2005; Wu
and Babcock, 1995, 1996). Regulatory approaches to habitat conservation on privately held lands tend
to work poorly when landowners have the ability to act on private information (Polasky and Doremus,
1998). Among voluntary approaches in which landowners are paid for enrolling in conservation
programs, evidence from experiments reveals that conservation auctions tend to be more efficient
than fixed price contracts when regulators lack full information about landowner payoffs (Cason and
Gangadharan, 2004; Schillizzi and Latacz-Lohmann, 2007).

One component of the SCP literature that the voluntary habitat conservation literature has only
just begun to consider explicitly is the role of habitat pattern in biodiversity conservation. Because
effective biodiversity conservation often requires large amounts of contiguous habitat, it is
important to coordinate conservation decisions across multiple landowners. Several papers have
investigated policies that make payments to landowners a function of the decisions of neighboring
landowners (e.g., Parkhurst et al., 2002; Parkhurst and Shogren, 2007). In work closer to the present
paper, Lewis and Plantinga (2007) and Lewis et al. (2009) combine an econometric model of
landowner decisions with GIS-based landscape simulations to examine the ability of simple
incentive policies to reduce habitat fragmentation in South Carolina. Using a biological model that
considers habitat pattern and species’ ability to disperse across patches of habitat, Nelson et al.
(2008) compare species conservation outcomes under five simple policy alternatives with efficient
solutions.

In this paper, we bring together the strength of the SCP literature—spatially explicit models of
biological benefits—with the strength of the literature on incentive-based policies—realistic
informational and political constraints—to analyze the relative efficiency of various incentive-
based policies for conservation. While we draw on methods, models, and datasets used in previous
studies (Lewis and Plantinga, 2007; Nelson et al., 2008; Polasky et al., 2008; Lewis et al., 2009), we
make a number of improvements in this paper on these prior works. First, we develop and apply a
new theoretically grounded method for estimating WTA that avoids the need to equate WTA for
commodity-producing land uses (e.g., forest) to WTA for conservation uses, as was done previously
in Nelson et al. (2008). Second, we estimate a random parameters logit model that allows us to
account for unobserved temporal and spatial components of WTA. This model is more flexible than
those used in all the studies referenced above. As well, we estimate it using data for our study
region rather than using results from a national-level econometric model as was done previously
in Nelson et al. (2008). Third, we measure the social costs of policies instead of the budgetary costs
to the government, as in Nelson et al. (2008), thus permitting an evaluation of the efficiency of
policies. Fourth we explore the attributes of policy alternatives, including both least-cost and
benefit–cost policies, related to good performance. Finally, we combine the most appropriate
econometric and biological modeling approaches from prior work into an integrated model. Only
Nelson et al. (2008) has previously done so. Polasky et al. (2008) measure land value directly from
parcel characteristics but do not incorporate information about landowner decision-making,
which is included in the econometric approach. Lewis and Plantinga (2007) and Lewis et al. (2009)
evaluate policies for reducing habitat fragmentation but do not model the persistence of species of
conservation concern.

D.J. Lewis et al. / Resource and Energy Economics 33 (2011) 192–211194



2. Simulating responses to conservation incentives

Estimating the effects of voluntary land-use policies on the spatial pattern of landscape change
requires two primary tools: (1) a method to simulate baseline landscape change in the absence of
policy, and (2) a method to estimate the distribution of WTA for conservation payments for a
population of landowners. While econometric land-use models provide an obvious tool for simulating
baseline landscape changes (e.g., Lubowski et al., 2006; Lewis and Plantinga, 2007), estimating the
WTA distribution is more challenging for at least two reasons. First, using data on actual conservation
programs (e.g., prices paid for conservation easements) will likely cause sample selection bias because
unobservable characteristics may influence both landowner WTA and the decision to enroll in the
program. To control for sample selection bias requires data on both participating and non-
participating landowners. An alternative approach that avoids sample selection bias is to use micro-
scale data on land rental rates or land prices. Rental rate data provide information on a landowner’s
opportunity cost of remaining in the current use, but do not account for the foregone value of
converting to a more profitable use in the future, such as urban development. In theory, land prices
capitalize the stream of rents from the highest-valued uses. For our application, we lacked
comprehensive data on land sales, especially observations of non-developed parcels that are
candidates for conservation.

Here we describe an econometric land-use model and its use in simulating responses of private
landowners to incentive-based conservation policies. The method combines county-level
estimates of the net returns to multiple land uses with observed land-use decisions to estimate
WTA distributions for a population of landowners. Importantly, the method does not suffer from
the sample selection bias problem that arises when working with data on actual conservation
decisions. In addition, the method uses a large, comprehensive sample of observed land-use
conversions to measure the opportunity cost of remaining in current use or converting to any
alternative use. A notable feature of the approach is our ability to simulate both baseline and
policy-induced landscape change from the same underlying model. We use data on observed land-
use decisions in Oregon and Washington to estimate WTA distributions in the Willamette Basin of
Oregon.

2.1. Econometric model

Landowners are assumed to allocate a land parcel of uniform quality to the use that maximizes the
present discounted value of expected net revenues minus conversion costs. Landowners consider
current and historic values of net revenues to form static expectations of future returns. The
assumption of static expectations yields a simple decision rule under which the use generating the
greatest annualized net revenues net of conversion costs is chosen (Plantinga, 1996). The annualized
net revenue from each use is specified as a function of deterministic and random factors.4 For parcel i

that begins period t in use j and ends period t in use k, real annualized net revenues (Rikt) less
annualized conversion costs (rCijkt) are:

Rikt � rCi jkt ¼ a jk þ b0 jkRcðiÞkt þ b1 jkLCCiRcðiÞkt þ ðs1 jk$1cðiÞ jk þ s2 jk$2i jk þ ei jktÞ (1)

for all uses k = 1,. . ., K and time periods t = 1,. . ., T, where ða jk;s1 jk;s2 jk;b0 jk;b1 jkÞ are parameters,
ðRcðiÞkt; LCCiÞ are observable explanatory variables, and ðei jkt; $1cðiÞ jk; $2i jkÞ are random variables.
RcðiÞkt is the average net revenue from use k at time t in county cðiÞwhere parcel i is located and LCCi

indicates the productivity, as measured by the Land Capability Class (LCC) rating, of parcel i.5 The

4 A similar specification is used in Lubowski et al. (2006) and Lewis and Plantinga (2007). One important difference is the

inclusion of random parameters in the present model. Oregon has a well-known land-use planning system that largely prohibits

urban development outside of designated growth areas. Because we do not know the exact location of the plots used in

estimation, we cannot control explicitly for influences of land-use regulations. The random parameters model allows us to

measure implicitly these and other unobservable parcel-level effects.
5 LCCi is defined as a vector of dummy variables for the eight LCC categories 1–8, where lower numbers indicate higher

quality (U.S. Department of Agriculture, 1973). b1 jk is similarly defined as a conformable vector of parameters corresponding to

each of the LCC categories.
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inclusion of RcðiÞkt and LCCi allows the net revenue for parcel i to deviate from the county average
net revenue due to observable land quality. Real annualized conversion costs (rCi jkt) are assumed to
be constant across parcels and time and are measured implicitly in the estimates of the constant
terms a jk.

The specification of Eq. (1) has a flexible error structure and allows the net revenue for parcel i to
deviate from the county average net revenue due to unobservable parcel and county factors. As in a
standard logit model, the random terms ei jkt are assumed to have a type I extreme value distribution
with a common scale parameter j j for all k uses. The terms $1cðiÞ jk and $2i jk are standard normal
random variables specific to county cðiÞ and parcel i, respectively. Thus, s1 jk$1cðiÞ jk and s2 jk$2i jk are
error components that allow net revenues to be correlated spatially (all parcels within a county share a
common $1cðiÞ jk term) and temporally (each parcel has a common $2i jk term across periods). We can
identify the random parcel effect because of the panel structure of our data (the land-use decision on
each plot is observed at multiple points in time). As such, we account for plot-level unobservables (e.g.,
road proximity) that are likely to be correlated across time. In addition, since the error components
vary by starting and ending land-use, the variance of the error structure in Eq. (1) is heteroskedastic
(the variance varies by land use).

The model in Eq. (1) is a random parameters logit (RPL) model that is estimated with maximum
simulated likelihood using data for Oregon and Washington west of the crest of the Cascade
Mountains. The main data source is the National Resources Inventory (NRI), which provides 15,356
repeated plot-level observations of land use for 1982, 1987, 1992, and 1997, as well as the LCC rating
of each plot. We focus on the land uses that account for most of the region’s private landbase:
cropland, pasture, forest, and urban. County-level estimates of annual net revenues from these uses
are taken from Lubowski (2002) and discussed in greater detail in Lubowski et al. (2006). The net
revenues from forests are measured as annualized revenues from timber production less
management costs. Agricultural net revenues equal the annual revenue from crop and pasture
production less costs and plus government payments. The forest and agricultural net revenues are
county averages reflecting the existing mix of timber types and crops and their associated yields. Net
revenues from urban land are measured as the annualized median value of a recently developed
parcel used for a single-family home, less the value of structures. Landowners are assumed to form
expectations of future net revenues by computing the average of annual net revenues over the
preceding 5-year period.

The NRI data reveal that no plots leave urban use and a very small percentage leave forest use
between 1982 and 1997. Thus, we focus on modeling the parcels that begin the periods 1982–1987,
1987–1992, or 1992–1997 in crop and pasture uses. Separate models are estimated for each starting
use. There were 1197 NRI plots in cropland use in 1982, and by 1997 there were 176 plots that
converted to pasture, 9 plots that converted to forest, and 95 plots that converted to urban. There were
1574 NRI plots in pasture in 1982, and by 1997 there were 177 plots that converted to crops, 79 plots
that converted to forest, and 87 plots that converted to urban. We have too few observations within
the LCC categories to estimate the full set of interaction terms in Eq. (1) and, therefore, must place
restrictions on b1 jk parameters. For the models that describe cropland and pasture conversion to use k

we collapse the eight LCC categories into three categories: LCC 1 and 2, LCC 3 and 4, and LCC 5–8. We
estimate interaction terms for net crop revenues and the combined LCC 3 and 4 and LCC 5–8 (LCC 1 and
2 is the omitted category). Due to a lack of variation in LCC categories for cropland conversions to
pasture, we only estimate interaction terms for net pasture revenues and the LCC categories when
pasture is the starting use. There is not sufficient LCC variation in conversions to forest or urban use to
estimate interaction terms.

A well-known property of logit models is that the scale of random utilities (in our case, random net
revenues) does not affect the decision maker’s choice (Train, 2003). While the scale of utilities is
arbitrary in most applications, we want net revenues to reflect a landowner’s foregone returns so that
the model produces meaningful WTA measures. We accomplish this by setting the parameter on
average net revenues for the starting use to one in each model (i.e., b0 j j ¼ 1). For starting use j, Eq. (1)
can then be written:

Ri jt ¼ RcðiÞ jt þ ða j j þ b1 j jLCCiRcðiÞ jtÞ þ ðs1 j j$1cðiÞ j j þ s2 j j$2i j j þ ei j jtÞ; (2)

D.J. Lewis et al. / Resource and Energy Economics 33 (2011) 192–211196



where rCi j jt ¼ 0. In Eq. (2), the net revenue for parcel i is equal to the county average net revenue from
use j plus two types of adjustment factors. The term in the first set of parentheses measures the
deviation from the county average net revenue due to parcel-level land quality (a j j measures the
effect of the omitted LCC category).6 The second term includes the spatial and temporal random
adjustments to the county average net revenue described above. The normalization in Eq. (2) scales
the random net revenues for all uses to the average net revenue from the starting use, ensures that all
net revenues are expressed in money-metric terms, and identifies the scale parameter j j. When the
model is estimated, all of the coefficients are normalized on the scale parameter and so the estimated
coefficient on RcðiÞ jt equals 1=ĵ j.

A final estimation issue is that one of the alternative-specific constants (a jk) must be set to zero. We
impose the restriction a j j ¼ 0, which implies that the estimated constant terms for all other ending
uses k are â jk � â j j. As above, this restriction affects the level of net revenues, but not their ordinal
ranking. Below, we discuss a procedure for recovering â j j. We then use ĵ j and â j j to restore Eq. (2) for
the starting use and Eq. (1) for the non-starting uses, thereby preserving the desired scale for net
revenues.

All parameters in Eq. (1) are estimated using maximum simulated likelihood and results are
presented in Table 1.7 The reported coefficient estimates correspond to the unnormalized parameters
(i.e., the estimated coefficients have been multiplied by ĵ j, and the standard errors have been adjusted
with the Delta Method). The model estimated for plots beginning in cropland conforms closely to
expectations—all coefficients on net revenues are positive, and the marginal effect of net revenues on
cropland falls as land quality falls. The results for the model that describes pasture conversion to use k

are mixed. The coefficient for pasture and cropland net revenues has the expected positive effect on
higher quality lands, but turns negative for low quality lands (LCC>4 for pasture; LCC>2 for crops).
This likely reflects the fact that there are few parcels in such uses for low land quality. The coefficient
on urban net revenues in the pasture equation is positive and significantly different from zero with a
one-tailed test and a 10% level of significance, while the coefficient on forest net revenues is negative
but not significantly different from zero. Finally, there is evidence of substantial unobserved
heterogeneity at the county and parcel-levels, as the coefficients for the county- and parcel-level error
components are significantly different from zero in all cases, with the exception of the parcel effect for
urban use in the pasture equation.

2.2. Willingness-to-accept conservation payments

Given the starting use j, and K possible land-use choices, the maximum net revenue derived from
parcel i in time t is found by considering the net revenue for each of K possible land uses:

R�i jt ¼maxfa jk þ s1 jk$1cðiÞ jk þ s2 jk$2i jk þ b0 jkRcðiÞkt þ b1 jkLCCiRcðiÞkt þ ei jktgK
k¼1: (3)

Under the stated distributional assumptions for ei jkt , Eq. (3) can be re-written:

R�i jt ¼
1

j j

ðln½
X

k
expða jk þ s1 jk$1cðiÞ jk þ s2 jk$2i jk þ b0 jkRcðiÞkt þ b1 jkLCCiRcðiÞktÞ� � gÞ þ ni jt ; (4)

where g is Euler’s constant and ni jt is distributed type I extreme value with location parameter equal to
zero and scale parameter j j (Ben-Akiva and Lerman, 1985). Eq. (4) is used to estimate a WTA distribution
for each parcel i under the assumption that landowners are indifferent between receiving the maximum
net revenue from the K uses and an equivalent payment for putting their land into conservation.

It should be noted that we do not model uncertainty over future net revenues or the potential
irreversibility of land-use decisions (Schatzki, 2003). As such, option values associated with delaying

6 The term a j j plays an important role here. If the coefficient on b1 j j is negative (positive) then a j j allows for upward

(downward) adjustment in the average net revenue due to observable parcel-specific land quality. Without a j j , Eq. (2) could not

be interpreted as a deviation from the county average net revenue.
7 Each observation is weighted according to NRI expansion factors to reflect the geographic sampling intensity that is present

in the NRI. To avoid shrinking standard errors due to this weighting, the weights are scaled so that they sum to the total number

of observations.
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conversion decisions are not explicitly represented in our WTA measures, though they may be
implicitly captured in the estimated model parameters. If there is an option value associated with
converting land to conservation uses, we may underestimate WTA. This problem is partially mitigated
given our interest in the relative performance of different conservation policies.

Before we can apply Eq. (4), we must recover the parameter a j j, which we restricted to zero in the
estimation. Because the NRI provides a large random sample of parcels,8 we can exploit the

Table 1
Estimation results for random parameters models.

Parameter Estimate St. Error t-Statistic

Starting use is crops (n=3504)

1/scale 1.204 0.267 4.510

Crop returns 1.000 NA NA

Crop returns�LCC34 �0.511 0.210 �2.429

Crop returns�LCC5678 �0.094 0.563 �0.166

Pasture intercept �2.095 0.528 �3.969

Pasture returns 0.326 0.142 2.292

Forest intercept �7.799 2.116 �3.686

Forest returns 0.242 0.964 0.251

Urban intercept �4.788 1.137 �4.210

Urban returns 0.013 0.005 2.560

Random parameters – county effects

Crop St. Dev. 0.372 0.144 2.591

Pasture St. Dev. 0.381 0.119 3.189

Forest St. Dev. 1.112 0.433 2.567

Urban St. Dev. 0.761 0.274 2.778

Random parameters – parcel effects

Crop St. Dev. 0.524 0.141 3.705

Pasture St. Dev. 0.140 0.139 1.005

Forest St. Dev. 2.017 0.605 3.334

Urban St. Dev. 0.494 0.193 2.563

Starting use is pasture (n=4637)

1/scale 0.693 0.201 3.457

Pasture returns 1.000 NA NA

Pasture returns�LCC34 �0.662 0.263 �2.515

Pasture returns�LCC5678 �1.782 0.551 �3.233

Crop intercept �4.886 1.382 �3.534

Crop returns 0.339 0.358 0.946

Crop returns�LCC34 �2.427 0.919 �2.641

Crop returns�LCC5678 �1.478 0.843 �1.753

Forest intercept �6.310 1.852 �3.407

Forest returns �0.117 0.573 �0.205

Urban intercept �8.135 2.506 �3.246

Urban returns 0.001 0.001 1.225

Random parameters – county effects

Pasture St. Dev. 1.944 0.690 2.817

Crop St. Dev. 0.940 0.332 2.835

Forest St. Dev. 0.720 0.352 2.044

Urban St. Dev. 1.305 0.711 1.834

Random parameters – parcel effects

Pasture St. Dev. 0.603 0.222 2.723

Crop St. Dev. 0.762 0.262 2.905

Forest St. Dev. 1.656 0.506 3.271

Urban St. Dev. 0.133 0.307 0.435

Crop starting use: log likelihood function=�837.93. Pasture starting use: log likelihood function=�1191.45

8 The NRI is a stratified random sample of plots, whereby information on the geographic sampling intensity is provided by the

NRI’s expansion factor. The expansion factor is used to weight the likelihood function in estimation.
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relationship between parcel-level net revenues and the county average net revenue for the starting
use:

Rc jt ¼
1

Nc jt

XNc jt

i¼1

Rc
i jt ; (5)

where Nc jt is the number of parcels in county c in use j at time t and the Rc
i jt are net revenues for

parcels in county c. Substitute Ri jt in Eq. (2) into the right-hand side of Eq. (5). Eq. (5) holds
provided that:

a j j þ s1 j j$1c j j þ
1

Nc jt

XNc jt

i¼1

s2 j j$2i j j þ
1

Nc jt

XNc jt

i¼1

b1 j jLCCc
i Rc jt þ

1

Nc jt

XNc jt

i¼1

ec
i j jt ¼ 0; (6)

where LCCc
i and ec

i j jt are corresponding values for parcels in county c. We assume that our sample of
parcels is sufficiently large so that the mean of s2 j j$2i j j is zero. Further, the mean of the random terms
ec

i j jt is zero because we include alternative-specific constants (Train, 2003, p. 24). Thus, Eq. (6) is
satisfied when:

a j j þ s1 j j$1c j j ¼ �
1

Nc jt

XNc jt

i¼1

b1 j jLCCc
i Rc jt (7)

We compute the right-hand side of Eq. (7) for each county at four points in time, and regress these
values on a complete set of county fixed effects with no intercept. Because s1 j j$1c j j is zero on average,
the mean of the estimated coefficients is â j j.

The estimate â j j is added to each of the alternative-specific constants in Eq. (4) in order to restore
the original scale of net revenues. To simplify the notation, we denote the WTA for parcel i as
WTAiðVi jÞ, where Vi j ¼ ð$1cðiÞ j; $2i j;a j;b j;s j;ni jtÞ is a vector of all of the random variables on the
right-hand side of Eq. (4) associated with parcel i in starting use j. Annual per-acre WTA distributions
can be obtained by repeated sampling of the elements of V.9 We show average distributions for crop
and pasture parcels in the Willamette Basin in Fig. 1.10

2.3. Matching land parcels to WTA distributions and land-use transition probabilities

We conduct a spatially explicit simulation of conservation incentives in the 2.93 million
hectare Willamette Basin (Fig. 2). The Basin includes the urban areas of Portland, Salem, Albany,
Corvallis, and Eugene-Springfield, as well as significant areas of agricultural land on the valley
floor and forests in the surrounding mountains. To develop the simulation algorithm, we match
WTA distributions and land-use transition probabilities from the econometric analysis to privately
owned land parcels in the Basin. We use a parcel map constructed from a 30-m grid cell land-cover
map for 1990 (ORNHIC, 2000). To create the map we combined adjacent cells of similar land cover
to form 10,372 parcels, ranging in size from 0.09 to 750 ha. Parcels in industrial, commercial, dense
urban uses, and inside urban growth boundaries were excluded. The parcel map is described in
detail in Polasky et al. (2008). Given our emphasis on the conservation of private land, we
eliminate parcels that are publicly owned, permanently covered in water, and within urban
growth boundaries.11 This leaves 4940 privately owned parcels, of which 2319 are in crop and
pasture use. The remaining private parcels are in forest uses, rural–residential use, and private
conservation.

9 Fixed and random parameters are drawn using the Krinsky and Robb (1986) method, which accounts for correlations across

parameters through the use of the estimated variance–covariance matrix.
10 Since ni jt in Eq. (4) is unbounded, it is possible to have a negative WTA. For parcels starting in crop (pasture), the probability

of a negative WTA is, on average, 5% (12%). Given the low probabilities of a negative WTA, truncating the WTA distribution at

zero is of small consequence (Haab and McConnell, 2003, p. 97).
11 In Oregon each city and town is required to designate an urban growth boundary, within which high-density development

is permitted.
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The original parcel map has fourteen land-use or land-cover categories. These categories are
combined to match the four land uses in the econometric model. For example, the categories row
crops, grass seed, and orchards/vineyards are combined to form a cropland category. Spatial data
layers for LCC and county boundaries (Oregon Department of Land Conservation and Development
[n.d.]) are overlaid on the parcel map, thus associating each parcel n with an initial land use, a county,
and an LCC category. Each parcel can now be matched to a WTA expression, WTAnðVÞ, based on
Eq. (4).12

In order to determine baseline land-use changes, each crop and pasture parcel is also matched to a
set of land-use transition probabilities derived from the econometric results. According to our model,
the probability that parcel i changes from use j (cropland or pasture) to k (cropland, pasture, forest, or
urban) during the time period beginning in t is given by:

Pi jkt ¼ FðRcðiÞt; LCCi; $1cðiÞ j; $2i j; a j;b j;s jÞ; (8)

where F is a logistic function, and RcðiÞt is a vector of all of the net revenue variables and
$1cðiÞ j; $2i j;a j;b j and s j denote vectors of random terms associated with starting use j. For given
values of these random terms, Eq. (8) is used to compute transition probabilities for each of the eight
possible land-use changes from starting uses (cropland, pasture) to ending uses (cropland, pasture,
forest, urban). Other initial land uses change according to sample transition probabilities computed
with the NRI data (private forests) or are assumed to remain in their initial use with probability one

Fig. 1. Frequency of estimated annual per-acre WTA for a typical parcel in the Willamette Basin.

12 If a parcel has more than one LCC rating or is within more than one county, we construct an area-weighted average of WTA

values (the same procedure is used for the transition probabilities discussed below).
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(urban). As with the WTA values, each set of transition probabilities differs by initial use, county, and
LCC category and is matched accordingly to the parcels on the initial land-use map. The set of 5-year
transition probabilities for parcel n is a 4�4 matrix denoted Pn5.

2.4. Simulating the spatial pattern of conservation lands

We consider policies that pay landowners to convert cropland and pasture parcels to natural land
cover. The type of natural land cover a conserved parcel adopts is given by the parcel’s pre-Euro-
American settlement vegetation cover and includes the covers of prairie, emergent marsh, scrub/
shrub, oak and other hardwoods, old growth conifer, or riparian forest (Christy et al., 1998). Due to a
lack of data, we do not explicitly account for costs of converting crops and pasture to native cover. Our
econometric model does implicitly measure the costs of conversion to non-agricultural uses (e.g.,
forest) and these costs are reflected in the WTA values.

We simulate a range of different policies, described in detail below, that differ in terms of the subset
of cropland and pasture owners that are eligible for a per-acre conservation payment. For each policy,
eligible landowners are offered a payment, and landowners who have a WTA less than the payment
offered are assumed to enroll their parcels. It is assumed that landowners know their own WTA but the
regulator knows only the distribution of WTA. Enrollment continues until a budget constraint is met.
Because of our interest in the relative efficiency of policies, our budget is expressed in terms of
landowners’ opportunity costs, equal to the sum of WTA for conserved parcels. We do not consider the

Fig. 2. The Willamette Basin.
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cost of the policy to the government, which also includes transfer payments to landowners.13 If there
were no subsidies or other distortions to market prices, and no externalities from land-use choices,
total WTA would be an accurate measure of the social cost of conservation. In our application,
however, there are subsidies to agricultural producers and other market distortions in addition to
externalities (e.g., actions that affect water quality, air quality, aesthetics, and other environmental
benefits). We evaluate budgets of $5, $10, $20, and $30 million dollars per year.

We use Monte Carlo methods in the simulations to characterize the range of potential landscape
patterns. As in Lewis and Plantinga (2007), the transition probabilities and WTA distributions can be
interpreted as a set of rules that govern changes in a parcel’s use. The landscape simulations work as
follows:

1. Values of the random variables in V are drawn from their estimated distributions (Krinsky and
Robb, 1986) for each parcel n on the landscape and used to compute WTAnðVÞ.

2. The period 0 conservation decision for each parcel eligible for a conservation payment is
determined by comparing WTAnðVÞ to the payment Z. If WTAnðVÞ � Z, then parcel n is returned to
its native cover and remains in this state for all future periods.

3. If a parcel is not conserved in period 0, Eq. (8) is used to derive a vector of 50-year transition
probabilities Pn50.14 The 50-year land-use choice for each parcel is determined by drawing a
random variable r from a U(0,1) distribution. The resulting land-use choice is determined by
comparing r to the set Pn50.15

Using these steps we simulate a landscape of private land-use and conservation decisions that
would exist 50 years after the policy is enacted. In each round that we repeat these steps, we produce a
simulated future landscape that is consistent with the underlying decision rules from the econometric
model and incentives created by the conservation policy. We conduct 500 rounds of the simulation for
each policy and budget level, including a baseline with no conservation policy (i.e., Z=0), in order to
characterize the spatial distribution of conservation and working lands.16

3. Biological model and optimal landscape

We evaluate the outcomes of landscape conservation by computing a biodiversity score for each
simulated landscape pattern. In addition, we use a large-scale integer programming algorithm to
search over the set of feasible landscape patterns to maximize the biodiversity score for a given
opportunity cost of conservation. The combination of the biological model and the optimal landscape
algorithm allows us to evaluate the relative efficiency of incentive-based policies.

3.1. Biological model

The biological model uses land-use patterns from the simulation along with information on species
and habitats to evaluate the likelihood that species will be sustained in the future (Polasky et al., 2005,
2008). The biological model uses three species-specific traits to predict species persistence as a
function of the land-cover pattern: (a) species-habitat compatibility (i.e., what land covers are
considered habitat for the species), (b) the amount of habitat required for a breeding pair, and (c) the

13 In practice, the cost to the government is likely to be the relevant constraint on the conservation of land parcels. Our policies

could, alternatively, be constrained by budgets defined in these terms, as in Nelson et al. (2008). However, in this case, the

opportunity costs would vary across policies and budget levels, making efficiency comparisons difficult.
14 The transition probabilities in Eq. (8) correspond to land-use changes over a 5-year period. If M is a matrix of 5-year

transition probabilities, M10 is the matrix of 50-year probabilities. Elements of the 50-year matrix give the probability that a

parcel in use j in year 0 is in use k by year 50, accounting for all possible paths from use j to k that can be taken.
15 For example, suppose that a crop parcel has a 75% probability of remaining in crops, and converts to pasture, forest, and

urban use with probabilities of 15%, 5%, and 5%, respectively. For this example, if 0 � r � 0:75, the parcel remains in crops. If

0:75< r � 0:90, the parcel switches to pasture, and so on.
16 Generating two independent sets of 500 simulated landscapes reveals that all statistics presented in this paper do not differ

across the two sets of simulations.
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ability of the species to move between patches of habitat. The biological model uses information on each
species’ geographic range, habitat compatibility and land cover to generate a map of habitat for the
species. Total habitat area is divided by the amount of habitat required for a breeding pair to estimate the
maximum number of breeding pairs the landscape could support. An estimate for the minimum number
of breeding pairs on the landscape uses only the number of breeding pairs in habitat patches large
enough to support viable populations within the patch assuming no migration from other patches.
Information on the pattern of habitat patches and species’ dispersal ability is then used to generate a
connectivity score between 0 and 1 to weight the landscape score between the maximum and minimum
estimates. Habitat that is fully connected in a single large habitat patch gets a connectivity score of one
and the landscape score equals the maximum number of breeding pairs. With fragmented habitat
patches and species with less than perfect dispersal ability, the connectivity score is less than one and the
landscape score is a weighted average of the maximum and minimum number of breeding pairs. We
convert the landscape score for the number of breeding pairs into a probability that the species will be
sustained on the landscape using a saturating function with parameters set so that 500 breeding pairs
generates a probability of 0.50 and 1000 breeding pairs generates a probability of 0.95.17 Finally, we
aggregate species survival probabilities across all species and divide by the number of species to generate
a biodiversity score for the simulated landscape that can range from 0 to 1. A complete description of the
biological model can be found in Polasky et al. (2008).

3.2. Optimal landscape

To gain a sense of the relative efficiency of various incentive-based policies, we compare outcomes
under these policies to the optimal land-use patterns that maximize the biodiversity score for a given
cost. As above, costs are measured as the sum of annual WTA over all conserved parcels. However, in
contrast to the voluntary incentive mechanisms discussed above, in solving for the optimal solution
we assume the regulator knows the WTA for each parcel (not just the distribution of WTA) and can
freely choose parcels to conserve. Solving for the optimal land-use patterns in the Willamette Basin
application is a large-scale integer programming problem that involves choosing among five land-use
alternatives (crops, pasture, forest, urban or conservation) on over 2000 parcels. This optimization
problem is particularly challenging because of the non-linear spatial considerations in the biological
model. Instead of optimizing, which is extremely difficult in this application, we use heuristic methods
to find good – though not necessarily optimal – solutions. The approach used was developed in Nelson
et al. (2008) and Polasky et al. (2008) and details can be found there. Here, we discuss its key features.

The heuristic methods involve finding land-use patterns that maximize the biodiversity score for
three simpler versions of the biology model. These simpler biological models are linear in land-use
pattern, which allows us to find optimal solutions for these models. The first linear biological model
considers the amount of habitat area on the landscape but not the spatial pattern of habitat. The
second biological model maximizes the total number of breeding pairs as a function of total habitat
area, but not spatial pattern, up to an upper limit on breeding pairs for each species (i.e., this simplified
model assumes that all patches are perfectly connected). This model has the advantage of assigning no
further credit for additional habitat to species with sufficient adequate existing habitat to support a
viable population. The third biological model modifies the second model by penalizing breeding pair
counts as habitat becomes less connected on the landscape. We solve for optimal solutions for all three
biological models at various budget levels. We then evaluate each of these solutions with the full
biological model described in Section 3.1. The particular land-use pattern that produces the highest
biological score for a given budget level is used to approximate the optimal land-use pattern for that
budget level.18

17 The saturating function generates low probabilities of survival and small change with increased habitat for low numbers of

breeding pairs, rapidly increasing probability of survival with increased habitat around a survival probability of 0.5, and high

probability of survival and small change with increased habitat for high numbers of breeding pairs.
18 Because the optimization process is computationally costly, we apply it using the WTA values from the baseline simulations

that produce the 1st, 25th, 50th, 75th, and the 99th percentile biodiversity scores from among all 500 baselines. The maximum

biodiversity scores obtained with each set of WTA values are then averaged.
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4. The application

4.1. Terrestrial species included

The data needed toevaluate the full biological model (and the simpler linear versions) are available for
a set of 267 terrestrial vertebrate species native to the Willamette Basin (Polasky et al., 2008). Many
conservation agencies specifically target funding to species of conservation concern. In this application
we included only those species whose conservation status can potentially be improved by land-use
change in the Willamette Basin. We included a species if its population is predicted to substantially
decline over the 50-year period under a baseline of no conservation policy, or if the initial population of
the species is low but could be substantially improved with habitat restoration. We included species with
low initial populations if we could find at least one land-use pattern generating a survival probability of
0.5orhigherusingtheapproach inPolasky etal. (2008).19 Ofthe267original terrestrialspecies evaluated,
we found 24 species that satisfy the above criteria for being of ‘‘conservation concern’’.20

4.2. Incentive-based policies analyzed

We evaluate alternative incentive-based policies. Several are motivated by the types of habitat
conserved in the estimated efficient solutions (Table 2). Four insights relevant for designing incentive-
based policies emerge. First, efficient solutions tend to target the conservation of relatively rare
habitat types, particularly oak savanna, prairie, and emergent marsh. These habitats comprise
approximately 95% of conserved parcels in the approximate efficient solutions. Second, it is important
to target locations that contain large numbers of species. Approximately 60% of the parcels chosen
under the approximate efficient solutions are within the range of fourteen or more of the species
under consideration. Third, targeting conservation to create large contiguous conserved habitat has a
large impact on species persistence. Under the approximate efficient solutions, conserved parcels tend
to be large – the average size of conserved parcels is on the upper end of the parcel size distribution –
and between 70% and 80% of these parcels are adjacent to conserved parcels (either parcels selected
for conservation or existing conserved parcels). Finally, efficient solutions tend to target parcels with a
relatively low WTA when the conservation budget is low. Selection shifts towards parcels with high
biological benefits as the budget increases.

We evaluate six policies described in Table 3. The policies fall into two basic groups. First, we consider
least-cost policies under which a uniform per-acre payment is offered to all landowners who
meet specified eligibility requirements.21 Second, we incorporate a spatial agglomeration bonus

Table 2
Characteristics of conserved parcels in the estimated efficiency solution at different levels of cost.

Cost

(million $)

Average

size

(acres)

Percentage of

conserved parcels

containing

rare habitata

Percentage of

conserved parcels

within the range of

14 or more species

Percentage of

conserved parcels

adjacent to a

conserved parcel

Average

WTA

per acre

Maximum

WTA per

acre

5 899 93.16% 59.72% 79.21% $53.26 $164.16

10 933 94.96% 63.88% 79.32% $72.52 $232.81

20 895 94.70% 60.98% 78.48% $90.30 $358.43

30 913 96.34% 61.49% 79.83% $99.96 $414.44
a Rare habitat types include oak savanna, prairie, old growth forest, and emergent marsh.

19 Polasky et al. (2008) include land-use patterns where conservation decisions on public as well as private land can be

changed and the opportunity cost of conservation can reach as high as $25 billion in net present value across the whole Basin.
20 The 24 species are: American Bittern, Canada Goose, Green-Winged Teal, Cinnamon Teal, Ruddy Duck, White-Tailed Kite,

Bald Eagle, Osprey, Northern Goshawk, Red-Shouldered Hawk, Marbled Murrelet, Spotted Owl, Belted Kingfisher, Short-Eared

Owl, Grasshopper Sparrow, Common Muskrat, Wolverine, White-Tailed Deer, Painted Turtle, Western Pond Turtle, Northern

Harrier, Acorn Woodpecker, Western Meadowlark, and Fisher.
21 We refer to these as least-cost policies because a uniform per-acre payment will create a desired amount of habitat at least

cost.
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(e.g., Parkhurst et al., 2002) that restricts eligibility to parcels whose immediate neighbor also accepts a
payment. Further, we incorporate insights from Table 2 by restricting the agglomeration payments only
to those parcels with rare habitat. Finally, in an effort to combine multiple insights from Table 2, we
evaluate a policy that incorporates multiple eligibility constraints, limiting eligibility to parcels that
contain rare habitat, are large, and within the range of at least 14 species.

The second group of policies we examine target payments according to estimated benefit–cost
ratios, an approach often used to find efficient solutions (e.g., Murdoch et al., 2007; Weitzman, 1998).
Benefit indices are derived using the same basic biological principles used to define eligibility
constraints for the least-cost policies. Expected cost is the parcel-specific mean per-acre cost as
derived from the estimated distributions of WTA. For example, under the Lot Size – Agglomeration

policy, the benefits for a parcel are the combined size of conserving that parcel and a neighboring
parcel (in acres). We rank parcels by the benefit-to-expected-cost ratio in descending order, and the
parcel with the highest benefit–cost ratio is targeted first and paid its simulated WTA. Each
subsequent parcel in the ranking is conserved up until the point that the budget (computed as the sum
of actual WTA for conserved parcels) is exhausted. In addition to the Lot Size – Agglomeration policy, we
also design a policy that partially mimics Oregon’s Wildlife Habitat Incentives Program (WHIP) 22 and
a policy that incorporates a benefit index for multiple criteria.

5. Results

The relative performance of the incentive-based policies at the four annual budget levels is
presented in Table 4. The first row reports the changes in the biodiversity score relative to the baseline
for the estimated efficient solution. We then present the mean change in the score (averaged over 500
simulated landscapes and measured relative to the baseline) for each policy and budget combination.

Table 3
Incentive-based policies evaluated.

Eligible parcels Benefit index

Least-cost policies

Simple uniform All NA

Agglomeration – Rare Habitat Parcels satisfying both the

agglomeration and rare

habitat criteria

NA

Rare Habitat – Large – Range Parcels with at least three

of the following:

(i) �400 acres

(ii) �800 acres

(iii) Rare habitat

(iv) w/in range of at

least 14 species

NA

Benefit–cost policies

Lot Size – Agglomeration Parcels satisfying the

Agglomeration criteria

The combined size of two adjacent

conserved parcels

Oregon’s Wildlife Habitat

Incentives Program (WHIP)

All Assigned points based on

Oregon’s WHIP program

Rare Habitat – Large – Range All One point for each:

(v) �400 acres

(vi) �800 acres

(vii) Rare habitat

(viii) w/in range of at least 14 species

Note: Least-cost policies offer uniform payments and enroll the least-cost parcels subject to eligibility constraints. Benefit–cost

policies rank parcels according to the ratio of benefits to expected costs, where expected costs are derived from estimated WTA

distributions.

22 WHIP is a federal program that offers financial assistance for wildlife habitat on private land (USDA-NRCS, 2010). Scarce

cost-share assistance is allocated according to a system that ranks applications for cost share according to the land’s habitat

potential. Each state helps determine its own ranking system.
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In parentheses is the mean change in the biodiversity score for each policy expressed as a percentage
of the change in the biodiversity score in the estimated efficient solution.23

The estimated efficient solution displays increasing returns at low levels of the budget (up to $10
million), as shown by the more than doubling of the change in the biodiversity score in going from $5
to $10 million, and decreasing returns at levels of the budget above $10 million. In this application,
many of the species of conservation concern need significant increases in conserved habitat before
they exhibit much increase in estimated survival probabilities. At low budget levels, little land can be
conserved and conservation efforts have small effects. At a budget of $10 million, a sufficient amount
of land is conserved to achieve critical levels of habitat protection. Beyond the budget of $10 million,
further habitat conservation generates progressively lower marginal benefits.

The incentive-based policies also exhibit increasing returns over a range of budget levels. With few
exceptions, the policies display increasing returns up to the $20 million budget level and some policies
show increasing returns at all levels. Increasing returns occur for a wider range of budgets because the
incentive-based policies cannot control as precisely the spatial pattern of conserved land so that
habitat additions tend to be more fragmented than in the efficient solution. Those policies that do not
take special account of spatial patterns tend to exhibit increasing returns over a wider range of budget
levels. For such policies land conserved tends to be fragmented, especially at low levels of
conservation. As more land is conserved, there is a greater chance that conserved parcels will be
joined, and this produces improved conservation outcomes (Lewis et al., 2009).24

None of the incentive-based policies do particularly well relative to the estimated efficient solution
at low budget levels. At a budget of $5 million, the best incentive-based policy (Agglomeration – Rare

Habitat) achieves only 24% of the estimated maximum increase in the biodiversity score. The benefit–
cost policies do particularly poorly at the budget of $5 million, achieving less than 10% of the increase
in the biodiversity score under the estimated efficient solution. We had expected the benefit–cost
policies to outperform least-cost policies because they incorporate information about both biological
benefits and cost in choosing priority sites. The least-cost policies enroll the cheapest land, a desirable
property at low budget levels especially when combined with eligibility constraints that reflect basic
biological principles. Incorporating biological benefits via simple rules like choosing sites with rare
habitat types or that border other conserved sites, as in the Agglomeration – Rare Habitat policy, proves
to be the best of the policies we analyzed at a budget of $5 million.

The Agglomeration – Rare Habitat policy consistently outperforms the other least-cost policies,
achieving greater increases in the biodiversity score at all budget levels. This policy restricts eligibility
to parcels that contain rare habitat types important for conservation and to parcels that border other

Table 4
Estimated mean change in biodiversity score relative to baseline.

$5m $10m $20m $30m

Estimated efficient solution 0.0844 0.2456 0.3293 0.3498

Uniform policies

Simple uniform 0.0105 (12.45%) 0.0227 (9.23%) 0.0615 (18.66%) 0.1058 (30.24%)

Agglomeration – Rare Habitat 0.0199 (23.62%) 0.0555 (22.61%) 0.1321 (40.13%) 0.1919 (54.86%)

Rare Habitat – Large – Range 0.0131 (15.54%) 0.0330 (13.42%) 0.0907 (27.53%) 0.1454 (41.56%)

Benefit–cost policies

Lot Size – Agglomeration 0.0060 (7.06%) 0.0685 (27.88%) 0.1278 (38.82%) 0.2253 (64.43%)

WHIP 0.0032 (3.80%) 0.0051 (2.06%) 0.0116 (3.52%) 0.0292 (8.34%)

Rare Habitat – Large – Range 0.0065 (7.67%) 0.0310 (12.61%) 0.2120 (64.39%) 0.3050 (87.21%)

Note: Numbers in parentheses represent the average change in the biodiversity score relative to the baseline as a percentage of

the average change in the biodiversity score on the estimated efficiency frontier relative to the baseline. Bold value indicates the

incentive-based policy with the highest estimated change in the biodiversity score.

23 We use all 500 simulations for the incentive-based policies when comparing the result with the estimated efficiency

frontier, though we only have five simulated landscapes for the latter. Using only the five simulated landscapes for which we

have efficiency frontier results yields virtually identical results to those presented in Table 4.
24 In the limiting case where all private land is conserved, the incentive-based policies and the efficient solutions will be

identical.
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conserved parcels, which reduces habitat fragmentation. The Rare Habitat – Large – Range policy
consistently scores below the Agglomeration – Rare Habitat policy, but higher than the Simple Uniform

policy. The difference between each of the least-cost policies is generally small compared to the
difference between the least-cost policies and the estimated efficient solution. The least-cost policies
achieve only about 30–50% of the estimated maximum potential increase in the biodiversity score at a
budget of $30 million, 20–40% at a budget of $20 million, and 10–20% at budgets of $5 or $10 million.

As the budget increases, the performance of benefit–cost policies improves compared to the least-
cost policies and the estimated efficient result. At a budget of $10 million the performance of Lot Size –

Agglomeration improves dramatically with a 10-fold increase in the change in biodiversity score
compared to the $5 million budget. The other benefit–cost policies continue to do poorly at the $10
million budget level. Beyond the $10 million budget level, all of the benefit–cost policies, with the
exception of the WHIP policy, generally outperform their least-cost counterparts. The benefit–cost
policy Rare Habitat – Large – Range has the best performance of all policies we analyzed at both the $20
and $30 million budgets. At the $30 million budget, Rare Habitat – Large – Range achieves 87% of the
estimated maximum attainable change in biodiversity score.

Fig. 3 summarizes the relative performance of the policies by presenting the estimated efficiency
frontier along with the best and worst policy frontiers. The policy frontiers depict the change in the
biodiversity score achieved by the best or worst performing policy at each of the budget levels. The
worst frontier is defined at most budget levels by the WHIP benefit–cost policy, which most closely
mimics current conservation policy in the region. However, Oregon’s WHIP program is targeted
towards a different set of goals than maximizing a biodiversity score for the terrestrial species
modeled here. In particular, Oregon’s WHIP program has a focus on aquatic species (e.g., Salmon),
species listed under the Federal Endangered Species Act and Oregon state programs, and particular
Conservation Opportunity Areas that may not spatially align with the best habitat areas for the 24
terrestrial species modeled here. The best policy frontier provides guidance with respect to the type of
information that should be incorporated into the policy design. The policies on the best frontier are
those that target rare habitat types and that minimize fragmentation. Even though the best policies do
much better than the worst, at most budget levels they still achieve a relatively small percentage of the
estimated maximum increase in the biodiversity score at low budget levels.

Across the 500 simulations, there is considerable variation in the results for many of the policies we
analyzed. In Fig. 4 we demonstrate this variation by showing the entire distribution of the biodiversity
scores (not just the means) for the Rare Habitat – Large – Range policy, as applied in its least-cost and
benefit–cost versions. There are two general findings. First, the variance of the biodiversity score

Fig. 3. The estimated efficiency, best policy, and worst policy frontiers.
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increases as the budget gets larger. Increasing budgets result in more conserved land, which increases
the number of ways the landscape could be arranged, and yields a wider array of biodiversity
outcomes. Second, the variance in the biodiversity score resulting from the least-cost policies is larger
than the variance resulting from the benefit–cost policies. Successful biodiversity conservation with
least-cost policies is heavily dependent on the somewhat random location of low-cost land, while
benefit–cost policy is more tightly focused on achieving particular landscape patterns. This difference
in variance between the two basic policy approaches could be important to policy makers concerned
with minimizing the potential for undesirable outcomes.

We also examined the sensitivity of the relative rankings of policies to assumptions in the
biological model. In particular, we compared results when we varied parameter values on the
saturating function so that a 50% probability of species persistence was made to equal 250, 500, and
750 breeding pairs. As the number of breeding pairs needed for a 50% probability of persistence
shrinks, the amount of habitat needed to achieve conservation targets declines making the reduction
in breeding pairs work to some extent like an increase in the conservation budget. The relative
rankings of the incentive policies did not change with alternative assumptions about the saturation
function for large budgets (no changes at the $30 million budget and only one change at the $20
million budget). At the $5 million budget, two benefit–cost policies, Rare Habitat – Large – Range and
Lot Size – Agglomeration, do markedly better at 250 breeding pairs than at 500 or 750 breeding pairs.
Both of these strategies do well as the conservation budget increases. Full results of this analysis are
available from the authors upon request.

6. Conclusion

This paper addresses the efficiency of simple voluntary incentive-based policies in achieving
biodiversity conservation objectives. This issue is important not just for biodiversity conservation but
for any effort to provide a public good requiring coordination over multiple decision-makers who have
some degree of private information. We developed a method that integrates an econometric model of
private land-use decisions, landscape simulations, spatially explicit data, a biological model that
estimates species persistence, and an algorithm that approximates the set of efficient solutions. These
methods allow us to simulate landowner responses to policies and the consequences of these
decisions for biodiversity conservation and to compare these outcomes to efficient outcomes to show
the relative efficiency of various policy approaches. Our approach draws on the strengths of earlier
conservation planning and incentive-based policy literatures, while improving the methods applied in
our previous papers (Lewis and Plantinga, 2007; Nelson et al., 2008; Polasky et al., 2008; Lewis et al.,
2009).

Fig. 4. Frequency of biological scores under the Rare Habitat – Large – Range policy.
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We find that simple voluntary incentive-based policies are often highly inefficient in achieving
conservation objectives. There can be substantial differences between the biodiversity changes
achieved with voluntary incentive-based policies compared to those that are theoretically possible
with full information and control over landscape pattern. The inefficiency of incentives in improving
biodiversity arises primarily from the inability of regulators to control the spatial pattern of
landscapes with a voluntary payment mechanism. The decision of any particular landowner to convert
their land to conservation depends on their willingness-to-accept a payment for such action. Since the
willingness-to-accept a conservation payment is private information, a regulator is uncertain ex-ante

of the spatial landscape pattern that will result from a given set of payments offered to a group of
landowners. Our results demonstrate that information revealing mechanisms such as auctions to elicit
landowners’ willingness-to-accept combined with an explicit attention to habitat fragmentation may
be a necessary step to achieving efficient conservation with incentive-based policies. The results of our
analysis comparing simple incentives to the efficient solution indicate the degree to which the
efficiency of voluntary incentives in conserving biodiversity can be improved through gathering
further information on WTA.

The results presented in this paper are influenced by the landscape context and the species we
included in our analysis. Other applications that analyze incentive-based policies in different
landscapes and with different species will be needed before we can be confident about general
conclusions. Nevertheless, our results suggest a set of testable general hypotheses: (a) incentive-based
policies tend to achieve only a small portion of the potential conservation gains when landowners
have private information about willingness-to-accept, (b) the relative efficiency of incentive-based
policies tends to improve as the conservation budget increases, (c) adding biological criteria to policy
design (e.g., including rare habitat types or minimizing fragmentation) can yield large improvements
in performance, (d) least-cost policies tend to be more efficient than benefit–cost policies when
budgets are low but the reverse tends to be true when budgets are high, and (e) policies based on
benefit–cost ratios are likely to achieve biodiversity outcomes with lower variance than least-cost
policies. The accumulation of other case-studies, or the scaling up of our methodology to larger
landscapes, would be a fruitful approach to testing the generality of our findings.
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