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Wave transmission in time- and space-variant helicoidal phononic crystals
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(Received 26 August 2014; published 4 November 2014)

We present a dynamically tunable mechanism of wave transmission in one-dimensional helicoidal phononic
crystals in a shape similar to DNA structures. These helicoidal architectures allow slanted nonlinear contact among
cylindrical constituents, and the relative torsional movements can dynamically tune the contact stiffness between
neighboring cylinders. This results in cross-talking between in-plane torsional and out-of-plane longitudinal
waves. We numerically demonstrate their versatile wave mixing and controllable dispersion behavior in both
wavenumber and frequency domains. Based on this principle, a suggestion toward an acoustic configuration
bearing parallels to a transistor is further proposed, in which longitudinal waves can be switched on and off

through torsional waves.

DOI: 10.1103/PhysRevE.90.053201

I. INTRODUCTION

Phononic crystals (PCs) are spatially periodic structures
that can manipulate acoustic waves more effectively compared
to natural materials [1,2]. Intense recent research efforts along
this direction have shown that the acoustic characteristics of
PCs depend on their given material properties, geometrical
configurations, and boundary conditions. For example, the
frequency band structures of PCs can be modified by changing
their structural compositions or by the application of external
fields [3-5]. Although tunable PCs have been investigated
both theoretically and experimentally, their acoustic properties
are typically fixed by their initial design parameters and
are not allowed to vary adaptively, which limits the breadth
of their potential applications. Previous studies explored
the possibility of altering wave transmission characteristics
in situ by using time-varying material properties [6] and by
exploiting amplitude-dependent responses of their nonlinear
constituents [7-9]. However, dynamically tunable PCs are
relatively unexplored, and wave propagation mechanisms in
time- and space-variant PCs remain largely unknown.

Recently, the specific paradigm of granular crystals based
on the assembly of discrete particles has attracted significant
attention due to their nonlinearity stemming from Hertzian
contact interaction [10,11]. The tunability of this nonlinearity
from the weakly to the highly nonlinear regime involves a
degree of freedom that is significant in this regard [10-14].
Particularly, PCs with cylindrical elements have shown their
dynamic versatility in controlling the speed of nonlinear waves
[15] and manipulating the cutoff frequencies of band gaps
over remarkably wide ranges [16]. These studies leveraged
the variations of contact stiffness among slanted cylinders by
changing their alignment angles in a static manner.

In the present work, we report on the dynamic manipulation
of wave propagation modes in one-dimensional (1D) PCs made
of helically stacked cylinders defined as helicoidal phononic
crystals (HPCs) herein. We impose in-plane torsional waves
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to HPCs by systematically perturbing the alignment angles of
cylinders in the temporal and spatial domains. This results in
dynamic variations of axial contact stiffness in the helicoidal
structures, thereby making longitudinal waves coupled with
the torsional waves. In principle, this phonon-phonon scatter-
ing (i.e., wave mixing) effect is equivalent to optical Brillouin
scattering [17]. Such dynamic cross-talking between torsional
and longitudinal waves offers an unprecedented controllability
over wave transmission in PCs, exhibiting fundamentally
distinct characteristics in comparison to conventional PCs
with a fixed landscape of wave dispersions. Herein, we
demonstrate, for the first time, versatile manipulation of wave
dispersion mechanisms of a certain wave mode via another
by using time- and space-variant HPCs. In particular, we
employ three distinct schemes: one in which the HPCs are
space-independent, varying solely with time; one in which
they are time-independent but are varying with space; and
one in which both the tunability in space and in time are
employed concurrently. Finally, although acoustic diodes have
been proposed [18,19], we note that an acoustic transistor has
not been realized. Based on HPCs, we propose a configuration
bearing characteristics of a transistor, in that a longitudinal
wave can be controlled actively by a torsional wave.

Our presentation is structured as follows: In Sec. II, we
analyze the general model and give details of the availability of
parametric variations. In Sec. III, we consider time-dependent,
space-independent helicoidal configurations, in Sec. IV time-
independent but spatially dependent ones are studied, and in
Sec. V we combine both variations. In Sec. VI, we provide a
potential application of the HPCs with a view toward a future
implementation of an acoustic transistor. Finally, in Sec. VII,
we summarize our findings and provide some directions for
future study.

II. MODEL

The HPC investigated in this study is arranged in a DNA-
like helical architecture with increasing alignment angles (we
denote the absolute angle of the nth particle with respect to
the first particle as «,). The schematic of the HPC is shown

©2014 American Physical Society
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FIG. 1. (Color online) (a) Stiffness and sensitivity of the cylindrical Hertzian contact as a function of alignment angles. A schematic of
the HPC composed of a 1D chain of helicoidally stacked cylindrical particles under precompression is shown in the inset. (b) The stiffness
coefficient k., (solid blue line) and its single harmonic approximation based on its Taylor expansion (green markers). The parameter values in

this case are op = 10°, A, = 1°, and f, = 3 kHz.

in the inset of Fig. 1(a). Each cylindrical element supports
both longitudinal and rotational movements. Longitudinal
waves propagate along the helical chain through the point
contact among neighboring elements, while torsional waves
are imposed on the HPC at will by actuating each one of the
cylinders independently. We neglect the torsional elasticity or
friction at the contact. The relative angle between neighboring
cylinder particles is A«, = |o, — «@,—1|. The contact force
between two adjacent cylindrical particles is expressed by the
Hertzian law F = keyi(Aa)8%/% for Aa # 0, where F and § are
the contact force and displacement, respectively. The contact
stiffness coefficient is given as a function of the angle of other
relevant material parameters as [20]

nﬁY 1
3(1 — 12)eK (e)2 { [(1 - eZ)E(e) - K(e)}

1/4
X [K(e) — E(e)]} .

kcyl(Aa) =

Here K(e) and E(e) are the complete elliptic integrals
of the first and second kinds, respectively, and e =
V1 —{cos(Aa)/[1 + cos(Aa)]}¥/3 is the eccentricity of the
elliptical contact area between two cylindrical particles.
Furthermore, Y represents the Young’s modulus and v the
Poisson ratio. The contact stiffness k., is sensitive to the
relative alignment angle A« between adjacent cylindrical
particles [see Fig. 1(a)], implying that the dynamics of the axial
and rotational motions of HPCs are coupled. The longitudinal
motion of the HPC can be written in terms of both rotational
angle Aw, and axial displacement u, of the nth element:

M iy = keyl(A)[8y + -1 — uy]Y?

—u,n 2 )

where M is the mass of a cylindrical unit and &, is the
deformation at static equilibrium between the nth and (n +
D)th particles resulting from the precompression force Fy =
kcyl(Aan)(S,s,/z. The bracket is defined by [x], = max(0,x),

- kcyl(Aan+l)[6n+l + un

denoting that there are no tensional forces among cylinders.
For the numerical results reported in this study, we consider
HPCs composed of 200 fused quartz cylinders with diameter
18.0 mm and height 18.0 mm. The mass, Young’s modulus,
and Poisson’sratioare M = 10g, Y = 72 GPa, and v = 0.17,
respectively. The precompression (Fp) of the chain is assumed
to be 20 N. The dimensions, material properties, and boundary
conditions are based on the parameters used in the earlier
experimental study of [16].

For small relative displacements |u,_| —u,| < §,, the
stiffness of the Hertzian contact can be linearized [14]. Thus,
we can infer dispersion properties of this system by studying
the linearized equations of motion,

M’;t.n = klin(Aan)unfl - [klin(Aan) + klin(AarH»l)]un
+ klin(Aan-H )un+1 ) (2)

where the linear stiffness coefficient is given as kj,(Ax) =
3/2key(A)8y’>. While the nonlinear case of Eq. (1) is
extremely interesting in its own right, and we will return to
it in Sec. VI, for the purposes of the present work, we will
restrict most of our considerations to the linearized problem,
i.e., Eq. (2).

We first consider as a reference case a regular HPC without
introducing any dynamic perturbations of angles (i.e., the stan-
dard, homogeneous case). More specifically, cylindrical angles
in the helicoidal chain increase linearly by «g (i.e., @, = noy),
and thus the relative angles between neighboring particles
remain constant (Ao = op). Then, the axial stiffness k. (and
hence ki) is the same along the chain, which is equivalent to a
standard, homogeneous chain [10]. In this instance, the linear
problem, Eq. (2), is solved by means of the Fourier mode plane
wave ansatz u, = exp(ikn + iwt), where the wavenumber k
and the frequency w satisfy the dispersion relation

w(k)* = 2kiin(@o)[1 — cos(k)l/M, (€)

such that the maximum allowable frequency (i.e., the cutoff

frequency) is feutoff = vV —i{l /7. The computation of dispersion
relations in the case of dynamic HPCs is considerably more
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involved. Thus, we now turn, in Secs. III-V, to the reformu-
lation of results on the spectra of spatially and/or temporally
periodic linear difference operators and compare these semi-
analytical results to full numerical simulations of the nonlinear
model Eq. (1) in the case of small relative displacements.

III. TIME-VARIANT, SPACE-INDEPENDENT HPCS

‘We now consider a standing torsional wave in the helicoidal
chain, where the angles of the cylindrical particles are given by

o, = nag +n Ay cos(wyt), “4)

where w, = 2 f, is the frequency of the standing torsion
wave. These angular variations result in dynamic stiffness
changes in the axial direction. In order to simplify the analysis,
we assume |Ay| K |og|, such that we may Taylor expand
keyi(Aar) with respect to A, cos(wgt), yielding an expression
for the linear stiffness that is composed of a single harmonic
kiin = @ + Aq cos(wql), (%)
where
~ 12 % 1/2
Gy = key(@0)8y””  Aq = 3ky(00)Audy”,

where the prime denotes the derivative with respect to
the argument. See, e.g., Fig. 1(b) for the validity of this
approximation when |Ay| < |ap|. In order to compute the
dispersion relationship of Eq. (2) with the time-dependent
stiffness coefficient, Eq. (5), we make use of the discrete
Fourier transform

ak,t) =y un(t)e™,

neZ
where #i(k,t) = ii(k + m,t). Thus, Eq. (2) can be rewritten as

%h(k,t) = —w(k)? [1 + & cos(w t)] ak,1) (6)
t ) - (,.x,o o 10

where w(k) is the dispersion relation in the homogeneous case;
see Eq. (3). For each k, Eq. (6) represents the well-studied
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Mathieu equation, whose general solution can be found using
Floquet theory [21]:

a(k,t) = c1e'® pi(t) + c2e™® pa(1),

where (k) and p,(k) are the Floquet exponents, ¢; and c;
are arbitrary constants, and p; and p, are functions with
period T, = 2w /w,. For the Mathieu equation, stability is
only possible if the Floquet exponents are purely imaginary.
Typically, the imaginary part of the exponent [which we denote
o (k)] is incommensurate with the frequency w,, and thus the
dynamics is not periodic. The unstable and stable regions are
separated in parameter space by periodic solutions. Thus, the
stability boundaries can be determined by finding parameter
values where periodic solutions are possible. This can be
achieved by substituting the Fourier series representation of
a periodic solution into the Mathieu equation and demanding
that the Fourier coefficients be nontrivial. Doing so leads to the
well-known determinant condition to determine the stability
regions of the Mathieu equation [22]. In the [%gk), (%] plane,
the regions of instability are wedge-like and originate (i.e.,
when A /@&y = 0) at the values
Wy 1

20k) _ j @

where j € Z™. Since in our setting |w(k)| increases monoton-
ically from zero as k increases, we need only to consider the
first stability boundary [i.e., the one originating at 25))&) =1].
This boundary can be approximated analytically, leading to
the following condition for stability in our setting:

A

4ay

Wq
2w(T)

Figures 2(a) and 2(b) show the Fourier transform in the spatial
and temporal domains of a solution of Eq. (1) for parameter
values satisfying and violating condition Eq. (8), respectively.
For the unstable case considered in Fig. 2(b), only the first
instability region is entered. Thus, although the solutions grow
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FIG. 2. (Color online) (a) Superposition of (i) Floquet exponents o (k)/(27) (solid line) and a first-order harmonic o (k)/27 + f, [dashed
line, see Eq. (10)] versus the wavenumber k [parameter values are «p = 10, A, =5, and f, = 40 kHz, which satisfy the stability condition
Eq. (8)], and (ii) PSD [dB] of velocity component of the solution of Eq. (1) obtained by imposing a chirped pulse (0 to 30 kHz) with an amplitude
of 5 nm on the left end of a resting chain. (b) PSD [arbitary units] of velocity component of the solution with the unstable parameter values
ap =10, A, =5, and f, = 30 kHz. The vertical dashed line corresponds to the wavenumber yielding the Floquet exponent with the largest real
part. The horizontal line is the corresponding imaginary part of that exponent. The chain was excited in the same way as described for panel (a).
(c) Same as described for panel (a), but with the parameter values oy = 10, A, = 1, and f,, = 3 kHz, which do not satisty the stability condition
Eq. (8). However, in this case, the wavenumbers do not fall into regions of instability of the Mathieu equation due to the finite nature of the
simulations (see text), and thus the observed dynamics are stable. The chain was excited in the same way as described for panel (a).
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without bound, one can detect spectral concentration within the
range of wavenumbers that fall in the instability region. For
a chain of finite length L, the span of wavenumbers becomes
discrete, e.g., k, = n/(L + 1) in the case of fixed boundary
conditions. Thus, it is possible that each wavenumber avoids
each instability region of the Mathieu equation. For example,
if we assume fixed boundary conditions and |A| < |&|, then
Eq. (7) implies that the quantity
Wy

oL S ®

should not be in a neighborhood of 1/j for each j € Z" in
order to achieve stability. See Fig. 2(c) for an example.

In the case that the Mathieu equation is stable, we have
p12(k) = tio(k), where o(k) € R and p,(t) = p(t). Since
p1 has period T, we have the following solution:

ak,t) =) an(R)e O a, € € (10)
meZ

where the Fourier coefficients a,,(k) of the function p;(¢)
satisfy

am_1(k) + a1 (k) 280

anm (k) A { w(k)? }

[o (k) + wem]? — w(k)?
11

Our analysis shows that the longitudinal wave, interacting
with the periodic stiffness variations, produces frequency
shifts similar to optical Brillouin scattering [17]. This implies
that the HPCs can realize wave mixing effects, whereby
interactions between longitudinal and torsional waves produce
extra dispersion modes in variable frequencies. For example,
in Fig. 2(a) the value of f, is such that the curve —o (k)/27
is shifted into view (i.e. it becomes the next closest dispersion
branch). This is in contrast to Fig. 2(c) where f,, is such that the
principle dispersion branch o (k)/2m, when shifted the amount
f«, remains in view (i.e. is the next closest dispersion branch).
Thus, the newly created modes in time-variant HPCs can
effectively up-shift cutoff frequencies ( feuott = feutoft + Sfo)-
This is especially useful for application purposes, a theme that
we will revisitin Sec. VI. Itis also relevant to point out that a;
associated with o (k) & w, already bear an amplitude nearly
two orders of magnitude smaller than the principal mode ay.
Hence, it is natural to expect that a4, are considerably harder
to identify in the context, e.g., of Figs. 2(a) and 2(c).

As an additional comment, we should note that here we
consider angular periodic variations in the cosinusoidal form,

by bip 0 ...
by1 by by3 0
0 b3y b33 b3 4

B(k) =

o

0

byvi 0 0

0 ... 0  byn_on-3
0
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in order to capture the essential characteristics of the impact of
this variation (in the spirit also of Fourier decomposition of any
periodic variation into such modes). Moreover, the evolution
of the modes in this case is described by the Mathieu equation
[22], which is well-established in the realm of parametric
instabilities. Nevertheless, it would be worthwhile to consider
other, special forms of periodic variation within the more broad
setup of Hill’s equations [23] as generalizations of Eq. (6). A
notable example that is worthy to explore from the point of
view of deriving explicit analytical conditions for the insta-
bility manifestation is that of piecewise constant variations of
the angle, along the lines of the well-known, exactly solvable
Kronig-Penney model of quantum mechanics [24].

IV. SPACE-VARIANT, TIME-INDEPENDENT HPCS

We now consider modulating the rotational angles of
the helicoidal chain in the spatial domain. Under harmonic
perturbations, once again, but now in space, the angles of the
cylindrical particles become

o, = nag + Ag cos(kgn),

where A, and k, are the modulation amplitude and the
wavenumber (k, = 2w /N, where N is the spatial period of
angular variations). In this case, the linear stiffness coefficient
satisfies

klin(Aan) = klin(AarH-N)-

Thus, rather than use the Fourier transform to compute
the dispersion relationship (as in the case of spatially
homogeneous media), we use the Bloch transform [25]

itj(k,t) = sty (), (12)
neZ

where je{l,2,...,N} and (k) =1ii;(k+2mx/N,1).
Applying the Bloch transform to Eq. (2) yields

M j(k.1) = kin(Act))i j 1 (k1)
— [kin(Acj) + kiin(Aaj )]t j (k1)
+ kiin(Acjy )it j1(k,1). (13)

This system of N equations has solutions of the form
iij(k,t) = explijk + iwp(k)t] f;(k), where f and wp satisfy
the eigenvalue problem

— a)%(k)f(k) = Mle(k)f(k), (14)
where f = (f17f29 cee 7fN)T7 and
0 0 by n
.. 0 0
0 0
, (15)
by_an-—2 bn_an-1 0
by_in—2 bn_in-1 by_in
0 by n-1 by.n
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FIG. 3. (Color online) (a) Dispersion relation in the case of space-dependent torsional waves. Shown is the superposition of (i) N =3
dispersion curves (solid lines) versus the wavenumber k € [0,77/N] (parameter values are g = 10° and A, = 1°) and (ii) PSD [dB] of velocity
component of the solution of Eq. (1) obtained by imposing a chirped pulse (0 to 30 kHz) with an amplitude of 5 nm on the left end of a resting
chain. (b)—(d) Same as described for panel (a) but with (b) N = 5,(c) N =7, and (d) N = 10.

with
bjir1 = kin(Aaji)e*,
bj ;i = —lkin(Aaj) + kiin(Acj1)],
b; i1 = kin(Aaj)e™ ¥,
biv = kin(Aap)e ™™,
by, = kin(Aorp)e'™,
for N > 2, and

b1s = kin(Aaa)e’™ + kiin(Aay)e ¥,
bj i = —lkin(Acj) + kin(Actjy1)],
by1 = kin(Aay)e’™ + kin(Aaa)e ¥,

for N = 2. If the system parameters are chosen such that
kin(Acaj) > 0, then stability follows trivially, since B has
real, nonpositive eigenvalues (which can be shown using
the Gershgorin circle theorem [26] or by noting that B is a
Jacobi operator [27]). Under this assumption, our dispersion
relation will be composed of 2N curves (N of which are
nonnegative); see, e.g., Fig. 3(a). We see that multiple wave
modes are generated due to the effect of periodic variations
of spatial angles and that band gaps appear among newly
generated dispersion curves. It should be noted that in other
areas of physics, such as, e.g., nonlinear optics [28] and
atomic Bose-Einstein condensates [29] (see also references
therein), the use of such so-called superlattice potentials is
fairly widespread, leading to the formation of minigaps (i.e.,

gaps within the fundamental band existence in the absence
of additional periodicities). Within these minigaps, nonlinear
stationary states are also typically sought in these problems.
The space-time evolution of the longitudinal waves can
be obtained from the direct numerical integration of Eq. (1).
Again, we impose a chirped pulse (0 Hz to 30 kHz) on one
end of the chain with amplitude of 5 nm. The space-time
evolution of the HPC’s dispersion behavior is calculated
via the Fourier transform in the temporal domain and the
Bloch transform Eq. (12) in the spatial domain of the bead’s
velocities; see Fig. 3. While these minigaps become possible
for space-dependent torsional waves, we note they become
smaller as N increases; see Figs. 3(b)-3(d). As the Brillouin
zone shrinks to accommodate the larger periodicity index N
(hence the progressively narrower zone ending at w/N), N
segments of the dispersion relation “fold” inside this narrower
zone with the progressively also narrower minigaps separating
them as N increases. This trend is clearly illustrated in Fig. 3.

V. SPACE- AND TIME-VARYING HPCS
Here we combine both space- and time-variant effects in
the form of traveling torsional waves:

o, = nagy + Ag cos(kgn + wyt),

where A, is the modulation amplitude, k, is the wavenumber
(ke =2m/N, where N is the spatial period of angular
variations), and w, = 27 f, is the frequency of the traveling

053201-5
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FIG. 4. (Color online) (a) Dispersion relation in the case of space- and time-dependent torsional waves for oy = 10°, A, = 2°, N = 3 and
fa« = 3 kHz. Shown is the superposition of (i) N = 3 Floquet exponents (solid lines) and the first order harmonic shifts o (k)/27 £ f, (dashed
lines), and (ii) PSD [dB] of velocity component of the solution of Eq. (1) obtained by imposing a chirped pulse (0 to 30 kHz) with an amplitude
of 5 nm on the left end of a resting chain. (b) PSD [arbitrary units] of velocity component of the solution with unstable parameter values
oy =10, A, =5, N =3 and f, = 40 kHz (note this parameter set is stable for N = 1, see e.g. Fig. 2(a)). In this case, the Floquet multiplier
with the largest modulus occurs for k & (0. The horizontal line is the imaginary part of the corresponding Floquet exponent. The chain was

excited in the same way as in panel (a).

torsion wave. Thus, the linear stiffness coefficient now satisfies

kiin(Ac, )(t) = kiin(Act, n)(1),
klin(Aan)(t) = klin(Aan)(t + 277,'/&)0,).

Applying the Bloch transform Eq. (12) to Eq. (2) in this
case leads to the system of N second-order ODEs with
time-periodic coefficients

Md%i(k,1) = B(k,o)u(k,1), (16)

where 0 = (ii1,ls, ...,iy)" and B is defined by Eq. (15)
[note in this case B(k,t) = B(k,t + 27 /w,)]. Unlike the time-
varying setup considered in Sec. III, there are no analytically
tractable conditions for parametric stability of Eq. (16). Thus,
one needs to numerically compute the 2N Floquet multipliers
to verify that none has modulus greater than unity [where
the multiplier is defined as exp(uT,)]. Assuming stability,
the dispersion curves will have the form o; (k) + mw,, where
oj(k) is the imaginary part of the jth Floquet exponent and
m € Z. Motivated by Fig. 2(b), we choose parameter values
with |A,| < ||, which leads to a stable system; see, e.g.,
Fig. 4(a). In this case, as expected, the spectrum is altered by
applying an upshift to the cutoff (due to the temporal variance,
like in Sec. III) and by increasing the number of primary
(m = Oth order) branches (due to the spatial variance, like
in Sec. IV). Essentially, in this case, we see a combination
of the phenomenologies of Secs. III and IV. The latter is
responsible for the formation of the minigaps and the folding
of the dispersion relation within the narrower Brillouin zone,
while the former is responsible for the emergence of, chiefly,
the shifted frequencies by £mw, (once again, we chiefly
observe the ones with m = 1). An interesting observation
in this case is the apparent avoided crossing of the Floquet
exponents of one branch, with the higher-order harmonics
of another branch, as seen in Fig. 4(a). This is a well-
known feature of (typically self-adjoint) matrices representing
physical systems under monoparametric variations [30]. It has

to do with the fact that degenerate matrices with multiple
eigenvalues form a surface of codimension 2 and hence such
a crossing cannot be typically created by a monoparametric
tuning, such as the one considered, e.g., in Fig. 4(a).

It is also worth noting that the presence of spatial variance
can destabilize the system. For example, in Fig. 4(b) we
consider the same stable parameter values as in Fig. 2(a), but
with a spatial period of N = 3, leading to instability.

VI. AN APPLICATION BASED ON HPCS: TOWARD AN
ACOUSTIC TRANSISTOR

The realm of HPCs through its tunability can offer a plat-
form that may facilitate the realization of devices analogous to
well-established electronic ones. Here, we mention an example
of this type in the form of an acoustic transistor. The HPCs can
lead to features similar to those of the transistor based on the
finding that the dispersive bands of axial waves can be shifted
actively by torsional waves. To test this, we numerically excite
the first particle in the chain with a Gaussian pulse (bandwidth
b,,) and generate longitudinal waves, whose central frequency
fr 1is chosen to be above the cutoff frequency fouoff. See
Fig. 5(a), for example, with the parameter values f; = 20
kHz, b, = 1 kHz, foyotr = 17.0 kHz, A, = 1°, f, = 4 kHz,
and N = 10. The PSD of the input is the blue curve and
the transmitted wave measured at the end of the HPC is
the red curve. We find that the longitudinal wave above the
cutoff frequency is blocked by the chain in an evanescent
manner, and the transmission gain is about —220 dB. This
corresponds to an off state. Now we apply a torsional standing
wave and we observe that the amplitude of the longitudinal
wave increases by 60 dB [blue curve in Fig. 5(a)]. This is
the on state, which confirms the efficiency of HPCs toward
tuning longitudinal propagation, by means of the applied
torsional standing wave. Additionally, the transmitted signals
contain harmonics of f; and f, such as f; — f,(16.0 kHz)
and f1 + f,(24.0 kHz). It is important to note that while
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FIG. 5. (Color online) (a) The transistor effect of HPCs. The black curve denotes the Gaussian input signal, while the red (blue) curve
corresponds to transmitted signals under the switch off (on) state. f; and f.yor are the input and cutoff frequencies. (b) Variation of the
transmission of the acoustic wave at frequency f; as a function of the gate frequency f,.

this type of signal control is strongly reminiscent of the
functionality of a(n acoustic) transistor, nevertheless, our setup
does not possess the amplification characteristics encountered
in a regular transistor and hence our “device” should not be
considered an acoustic transistor per se.

From the working principle of the above setup, the
following condition should be satisfied for the transmission
of longitudinal waves:

Jo > fL — feutofr-

Thus, there should exist a lower frequency threshold for a
given f; and foyo- In order to show this threshold effect,
we investigate the frequency dependence of the transmission.
We excite a Gaussian pulse with the center frequency f; =
20.0 kHz and bandwidth b,, = 120 Hz. The numerical results
of the switch transmission with respect to f, are shown
in Fig. 5(b). The lower frequency threshold, f1 — feutoft>
according to Eq. (17), is plotted by the vertical line. We can
see that the transmission of the longitudinal wave increases
significantly at f; — fouofr- This feature is also reminiscent
of an electrical transistor: when the gate source voltage is
higher than threshold voltage, the conducting channel begins
to connect the source and drain of the transistor, allowing a
large current to flow.

a7

VII. CONCLUSIONS AND FUTURE CHALLENGES

We investigated the characteristics of helicoidal phononic
crystals (HPCs) in a shape similar to DNA architectures.
Based on the Hertzian contact among slanted cylindrical
elements, the HPCs develop strong cross-talking between
in-plane torsional waves and out-of-plane longitudinal waves.
Our (semi)analytical dispersion computations demonstrated
that the HPCs exhibit versatile, controllable behavior of
longitudinal wave transmission as a function of spatial and
temporal variations of torsional waves, which was confirmed
against full numerical simulations of the pertinent model.
Specifically, it was shown that time-variant HPCs show
(symmetric up and down) shifts of dispersive wave modes.
This was used to demonstrate that the longitudinal waves

can be switched on and off by torsional waves, in an effect
reminiscent of the electrical transistor. On the other hand, the
space-dependent variant was found to appropriately modify
the dispersion relation introducing a reduced Brillouin zone
and corresponding minigap within the linear spectrum. The
combination of the two effects provided a combination of
their influences, as well as additional intriguing features, such
as the observed avoided level crossings. Our conclusion is that
the time- and space-dependent phononic crystal provides an
ideal setting to manipulate acoustic waves by leveraging wave
mixing and switching effects and opens the doors for a host of
additional studies.

Among the themes of immediate interest, we include the
effects of coupling the dynamics of the torsional and longi-
tudinal waves, and considering higher amplitude excitations
to test what benefits and disadvantages the nonlinearity of the
system introduces. In the latter setting it would be interesting
to explore the influence of periodicity in the context of
traveling waves [10,11], and the formation of more complex
localized breather [31] excitations. It should be noted here that
these settings are not only amenable to direct theoretical and
numerical investigations, but additionally we believe should
be within the immediate grasp of current, state-of-the-art
experiments in the field.
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APPENDIX: DECAY OF FOURIER MODES IN
TIME-VARIANT, SPACE-INDEPENDENT HPCS

The presence of the first-order harmonic shifts [see, e.g.,
Fig. 2(b)] is what ultimately allows a signal with frequency
content lying outside the passband to be transmitted through
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FIG. 6. (Color online) (a) PSD of the displacements u, of the solution shown in Fig. 2(b) for the wavenumber k£ = 1. The spectral peaks
corresponding to a_;,ap and a; are shown as red points. (b) The decay a,/a, (green dashed line with markers) and a_,/a, (blue line with
markers) versus the wavenumber k. The analytical predictions from Eq. (18) (black dashed line) and Eq. (19) (solid black line) are also shown.

the chain. Thus, to improve the efficiency of this “transistor
effect,” it would be desirable to have control over the amplitude
of the first-order harmonics relative to the amplitude of the
original dispersion curve. This can be achieved by assuming
lam| < 1 for |m| > 1 in Eq. (11), yielding the following
prediction:

ak) _ A w(k)’
aok) — 2@ { [0 (k) + @, > — w(k)? } > @b
a,(k) _ A, w(k)’
aotk) — 2@ {[o(k) — w0, — w(k)Z} - A

To verify this prediction, we numerically solve Eq. (1)
and compute the Fourier transform in the time domain for
each wavenumber k. The largest peak corresponds to the ag
mode, which is concentrated around the frequency o (k) and the
modes a; and a_; are concentrated at o (k) £ w,; see Fig. 6(a),
for example. In Fig. 6(b) the decay prediction is shown against
numerically computed values for various wavenumbers k,
where the trend is captured well. Discrepancies stem from the
finite nature of the domains considered and the approximation
lam| = 0 for |m| > 1. From Eqgs. (18) and (19), we see that
if one desires larger spectral peaks at the m = =1 harmonics,
larger values of |A,/&| must be taken. However, this must
be weighed against the stability condition Eq. (8), where large
values of |A, /dg| can cause instabilities.
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