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Using ‘big data’ to explain visits to lakes in 17 US states
Erik Nelson!, Maggie Rogers?, Spencer Wood3, Jesse Chung?, and Bonnie Keeler?

Abstract: We use large dataset on US lakes from 17 states to estimate the relationship between
summertime visits to lakes as proxied by social media use and the lakes’ water quality,
amenities, and surrounding landscape features and socioeconomic conditions. Prior to
estimating these relationships we worked on 1) selecting a parsimonious set of explanatory
variables from a roster of more than 100 lake attributes and 2) accounting for the non-random
pattern of missing water quality data. These steps 1) improved the interpretability of the
estimated visit models and 2) widened our estimated models’ scope of statistical inference. We
used Machine Learning techniques to select parsimonious sets of explanatory variables and
multiple imputation to estimate water quality at lakes missing this data. We found the following
relationships between summertime visits to lake and their attributes across the 17-state region.
First, we estimated that every additional meter of average summer-time Secchi depth between
1995 and 2014 was associated with at least 7.0% more summer-time visits to a lake between
2005 to 2014, all else equal. Second, we consistently found that lake amenities, such as
beaches, boat launches, and public toilets, were more powerful predictors of visits than water
quality. Third, we also found that visits to a lake were strongly influenced by the lake’s
accessibility and its distance to nearby lakes and the amenities the nearby lakes offered. Finally,
our results highlight the biased results that “big data”-based research on recreation can
generate if non-random missing observation patterns in the data are not corrected.
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1. Introduction

Measuring human interaction with nature is important for several reasons. First, such
exercises help us understand the values that people ascribe to nature. Second, accurate
descriptions of these interactions give policy-makers and nongovernmental organizations
insights into the conservation and environmental policies that will increase human welfare the
most.

In the past, estimating how we use and relate to nature may have been limited by data
availability. Collecting data on human behavior in and around nature has traditionally been
expensive and time-consuming (Wood et al. 2013, Richards and Friess 2015, Harari et al. 2016).
But just as businesses and governments around the world have been inundated with “big data”
that describe customer and constituent behavior (Hofacker et al. 2016, Matz and Netzer 2017,
Ilieva and McPhearson 2018, Milne and Watling 2019), there are more and more large datasets
that capture the state of the physical world and some of our interactions with nature (Roberge
2014, Di Minin et al. 2015, Hausmann et al. 2018, van Zanten et al. 2016). While this data
revolution means that estimates of our interactions with nature can be more precise and
robust, this big data also presents some unique analytical problems.

As data has become cheaper and easier to collect, the number of potential predictors of
our behavior in and around nature has become very large and analysts may be tempted to use
all of these predictors when estimating our interactions with nature. However, models that
omit many potential predictors — parsimonious models — are desirous for several reasons. First,
many of the potential predictors will have little to no relationship to the behavior of interest.

The presence of many irrelevant variables in a model may make it hard to identify and isolate



the most essential correlates. Second, an over-parameterized model may be a poor predictor of
human behavior when used with datasets that were not used to estimate the human behavior
model. A model that hews too closely to the set of noise in the dataset used to “train” the
model is likely to perform poorly when used with a separate dataset of the same variables but a
different pattern of noise (Harrell et al. 1996). Therefore, a model parametrized with as little
irrelevant noise (i.e., variables) as possible is likely to have less prediction error with novel
datasets than an “overfit” model. Finally, a model that includes only the most relevant
predictors is easier to explain and interpret. Policy makers are more likely to act on research
that focuses on the most important correlates and can be easily explained to a broad audience
(Pullin and Knight 2005, Karl et al. 2007, Ruckelshaus et al. 2015).

The ways in which “big data” are created can also create analytical difficulties for the
data user. Unlike more consciously constructed research projects where data collection is
carefully planned, “big data” are often an amalgam of various data streams that, when cobbled
together, has missing observations. When this occurs one option is to drop every observation
that does not have a complete set of attributes. However, this action can reduce the usefulness
of an estimated model in two ways. First, it makes it the estimated model less precise. Second,
this action will bias the estimated model if there is a pattern to the observations that are
missing data. Therefore, correcting for patterns of missing data is likely to be important when

using big data to estimate how humans use and relate to nature.

2. Our study



We estimate how lake water quality, lake amenities, and landscape features around
lakes affect summer-time visits to a large number of US lakes. Understanding how lake water
quality effects visits to lakes relative to other recreational drivers such as lake amenities and
lake access can lead to more effective and coherent lake-based environmental and recreational
policy.

The data we use to explain summer-time lake visits are “big” in two ways. First, all lakes
4 hectares or larger across 17 contiguous states have a measure of total summertime visits
between the summers of 2005 to 2014 (N = 51,107). Second, there are more than 100 variables
that describe each lake’s water quality, set of amenities, and surrounding landscape over this
same time period (S| Text 1). Having such expansive data on lake-based recreation is unique;
typical park or lake visit studies may include at most 100 natural features and have data on 20
to 30 visit predictors (Phaneuf 2002, Hunt and Dyck 2011, Smirnov and Egan 2012, Donahue et
al. 2018). Further, many past studies have focused on parks or lakes from the same landscape
or region where differences in site attributes may be too slight to identify what lake features
drive visitation rates (Yi and Herriges 2017). Therefore, our estimates on the relationships
between summertime lake visits and lake attributes are 1) likely to be more valid in more
external cases than usual and 2) more precise than past estimates due to the geographic scope
and attribute heterogeneity in our data. However, while the bigness of our data gives our
analysis heft and unprecedented scope, it also presents analytical complications.

One challenge we faced was explanatory variable selection. As noted in the
Introduction, using all 100 plus explanatory variables at our disposal to explain lake visits would

have create a model poorer at predicting visits to out-of-sample US lakes than more



parsimonious models. In addition, policy-makers and concerned citizens interested in crafting
better lake recreation and conservation policy would likely ignore visitation model results if the
analysis was too large and unwieldy for quick comprehension. Therefore, we used Machine
Learning (ML) algorithms to systematically build parsimonious lake visitation models. The
objective of ML algorithms we used is to find a parsimonious set of explanatory variables that
predict out-of-sample visit rates better than alternative model specifications (e.g., Deryugina et
al. 2019). The limited size of ML-informed models also aided us in our efforts to generate easily
interpretable models.

Missing water quality and lake depth measures for most lakes in our dataset is another
analytical challenge we faced. For example, Secchi depth, the most prevalent lake water quality
measure in our dataset, and lake depth were measured for less than a fifth of the lakes.
Further, we found strong evidence that missing Secchi and lake depth observations were not
randomly distributed throughout our dataset (see below). Therefore, if we naively included
Secchi and lake depth in our explanatory variable selection algorithms or visitation models we
would have created two analytical difficulties. First, we would have lost estimation precision
due to the omission of most lakes from the model. Second, model estimates would likely be
biased given the non-random pattern in missing Secchi and lake depth observations. To avoid
these outcomes, we experimented with imputing Secchi and lake depth observations for lakes
missing this data.

Finally, we used the ML-generated models with and without imputed Secchi and lake
depth data to estimate the relationships between lake visits and lake attributes across the 17-

state region our dataset covers. We also compared the performance of the ML-constructed



models to the performance of a lake visitation model made up of variables suggested by the
recreational demand literature. In addition, we determined how robust our default estimated
relationships were to several modeling and data structure assumptions we made.

We found the following. First, on average, every additional meter of average Secchi
depth during the summer months between 1995 and 2014 was associated with at least 7.0%
more summer-time visits to a lake from 2005 to 2014, all else equal. However, while higher lake
water quality was associated with more visits to a lake, we consistently found that lake
amenities, such as beaches, boat launches, and public toilets, were more powerful predictors of
visits than water quality. We reached this conclusion using two bits of information. First, the ML
algorithms often selected lake amenities as strong predictors of visits while almost never
identifying Secchi depth as a strong predictor of visits. Second, the estimated coefficients on
the amenity variables in the lake visitation model were larger than Secchi depth’s estimated
coefficient. We also found that the rate of visits to a lake were strongly influenced by lake
accessibility and the distance to nearby lakes and the amenities the nearby lakes offered.
Finally, if we had only considered lakes with measured Secchi and lake depths our conclusions
on the relationships between lake visits and lake attributed would have been biased. Across the
non-random set of lakes with measured Secchi and lake depths the importance of lake
amenities and the location of and attributes at nearby lakes are minimized relative to their
explanatory power across the full set of lakes where Secchi and lake depth measures have been
imputed when missing. The potential bias created by non-random missing data patterns in “big
data” must be accounted for by researchers and policy-makers working with these data to

accurately explain human behavior in nature.



3. Data

We assume that there is a quantifiable relationship between summer visits to a lake and
its characteristics, including its water quality, amenities, and accessibility, of the form V = f(Z)
where Vindicates the count of summer visits to the lake over time period T and Z is a vector
that describes the lake’s characteristics during T.

We do not observe lake visits. Instead, we observe Y, the number of photo-user days
(PUDs) generated during the summers (June 15 to September 15) of 2005 through 2014 within
the boundaries of each of the 51,107 lakes in our dataset (Fig. 1). The photos we used to
generate summer PUD counts were found on the photo-sharing site Flickr (Wood et al. 2013;
Figs. 2 and 3). A lake’s summer PUD count increases in every one of its unique Flickr user-days
during the 2005 to 2014 summers. For example, if Jack posted 5 photos and Jill posted 10
photo taken within lake j’s boundaries on August 1, 2008 to Flickr then j's summer PUD count
increased by 2. If Jill subsequently posted 3 photos taken within lake j's boundaries on August 4
of 2008 then j’s summer PUD count increased by another unit.

Wood et al. (2013), Keeler et al (2015), Sonter et al. (2016), Sessions et al. (2016), Levin
et al. (2017), and Tenkanen et al. (2017) have shown that the relationship between Flickr-based
PUD counts (Y) and observed visits (V) to recreational sites can be represented by the linear

relationship V=0 + aY where 8, o > 0.1 Suppose our estimate of Y = f(Z) measures the

L Flickr is now a much less popular photo-sharing site than Instagram (it is not clear this was the case during our
2005 to 2014 timeframe). Further, Instagram tends to have younger users than Flickr. However, using data from
Europe, van Zanten et al. (2016) found that Flickr and Instagram users tend to post photos of similar landscape
features. When Tenkanen et al. (2017) compared Flickr to Instagram and Twitter data to manually counted
monthly visits to South Africa parks they found that Instagram and Twitter predicted visits better. However, there
was less discordance between the social media sites’ predictive powers across Finland parks.
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percentage change in summer 2005 to 2014 PUD counts at a representative lake given a one-
unit increase in Z;, all else equal. Assume (Y’-Y)/Y =0.2 and (Y’-Y)/Y = 0.3 for one-unit increases
in Zjand Z, respectively, where Y’ and Y are the initial and subsequent values of Y. Therefore,
we can conclude that a one-unit change in Z; was expected to increase the summer 2005 to
2014 PUD count at the lake by 20%, all else equal (and a one-change in Zx causes a 30%
increase, all else equal). However, despite not knowing 8 and a, we can also use this estimate
to say something useful about expected visits to the lake. If V=0 + aY then (V-V)/(V-6) = 0.2
and (V'-V)/(V-8) = 0.3 given the one-unit increases in Z; and Z, all else equal. Therefore, given
it is reasonable to expect 6 > 0, we can interpret the estimate of Y = f(Z) to mean that a one-
unit increase in Zx increases (V'—V)/V by at least 30 percentage points (lower bound). Further, a
one-unit increase in Zg increases V by at least 10 percentage points relative to the impact of a
one-unit increase in Z;.

Unlike lake visits, lake characteristics — variables that could be part of Z — are directly
observed. Most of the lake data come from LAGOS-NE-LIMNO v1.087.3 (Soranno et al. 2019)
and LAGOS-NE-GEOQ v1.05 (Soranno and Cheruvelil 2017). LAGOS (Soranno et al. 2017) is a set
of data products that contains water quality (LAGOS-NE-LIMNO) and ecological and landscape
context (LAGOS-NE-GEO) data for lakes found in 17 US states. In our study we limit ourselves to
the 51,107 lakes in LAGOS that are 4 hectares or greater. Of all the lake water quality measures
included in LAGOS-NE-LIMNO, Secchi depth is the most prevalently recorded measure across
the 51,107 lakes (Fig. 4). The greater a lake’s Secchi depth, the greater the lake water’s clarity.
Measures of a lake’s total phosphorous (TP), chlorophyll-a (Chlor), and nitrate and nitrite

(NO2NO:3) are less common in LAGOS. In this study we will rely on the mean of Secchi



measurements taken from June 15 to September 15 in the years 1995 to 2013 as a
representative measure of a lake’s quality during the summers of 2005 through 2014. Only
9,005 of the 51,107 lakes in our dataset (17.62%) have at least one Secchi measure taken from
June 15 to September 15 in the years 1995 to 2013 (the percentages are 10.66, 13.32, and 6.58,
respectively, for TP, Chlor, and NO2NOs).?

Besides water quality measures, LAGOS records include many other lake characteristic
variables. Each lake’s location, size, depth, and home subwatershed and county are given.
Further, land use distributions at the 500-meter buffer and at the subwatershed-level (12-unit
hydrological units) in 2001, 2006, and 2011 are given for each lake. Subwatershed-level data on
thirty-year climate averages and stream, wetland, and lake density are also provided in LAGOS.
Unfortunately, mean and maximum lake depth information is only given for a minority of the
lakes in the dataset. For example, maximum depth is provided for 9,371 or 18.3% of the 51,107
lakes in the dataset.

We generated several other lake and subwatershed-level variables that could
potentially explain summer visits to a lake. We used OpenStreetMap to count the number of
features tagged as a marina, boat launch, beach, hotel, shelter, toilet, picnic area, or BBQ
facility (OpenStreetMap contributors 2015) at each lake as of 2016. For example, a lake with a
‘5’ for the picnic amenity had 5 features surrounding the lake tagged as a picnic area as of 2016

(Figure 5). Boat launches are the most prevalent amenity across the 51,107 lakes in our

2 LAGOS does not have 2014 Secchi measurement data. Even though Secchi measurement data from 1995 to 2004
does not overlap with the PUD dates, we reach that far back in time to make the roster of lakes with summer
Secchi measures as large as possible. For example, if we limited our data to summer Secchi measures from 2005 to
2013 only 5,817 lakes would have a summer Secchi measure.
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dataset: 1,357 or 2.7% of the lakes have at least one boat launch feature as of 2016. Beach
features are found at 1.1% of the 51,107 lakes. Only 1,919 lakes or 3.8% of the 51,107 lakes
have at least one amenity of any type. We also found each lake’s distance to the nearest core-
based statistical area (CBSA; in kilometers; US Census 2017A).

In addition, we created a suite of subwatershed-level socioeconomics variables. First,
we found the 2010 population and population density (people per square kilometer) in each
subwatershed with USEPA’s 30m dasymatric population raster (USEPA 2013). Then, using 2011-
2015 American Community Survey, 5-year average data at the block group level in conjunction
with the dasymatric population raster, we created a series of 2011-2015 socio-economic
population maps at the 30-meter grid cell level, including number of people with a Bachelor’s
degree, number of Non-Hispanic whites, etc.? Finally, these maps were used to summarize
socio-economic conditions circa 2011-2015 in each subwatershed. The socioeconomic variables
in our dataset include the 1) percentage of the subwatershed population that is Hispanic or
Latino of any race, 2) percentage of the subwatershed population that is Non-Hispanic white, 3)
percentage of the subwatershed population that is black, 4) percentage of the subwatershed
population with a Bachelor’s degree or more, 5) percentage of the subwatershed population
that is living below the Federal poverty, 6) the subwatershed’s median household income, and
7) the subwatershed’s median age.* Each lake j was assigned the socioeconomic values of its

parent subwatershed.

3 For example, if raster cell j is in block group k then the population in cell j according to the dasymatric population
raster was multiplied by the percentage of Non-Hispanic whites in block group k to generate the number of Non-
Hispanic whites in cell j.

4 For median and mean household (HH) income we used a gridded map of household population rather than a
gridded population map. If raster cell j is in block group k then the number of households (HHs) in cell j was
multiplied by the median or mean HH income in block group k to generate the total HH income in cell j. Then the

10



Further, we also generated a set of spatially lagged variables. These variables summarize
lake characteristics at j's nearest neighbors. For example, lake j’s spatial lag of summer PUDs is
given by w;Y where w;is a [1 x 51107] vector of distance weights between lake j and all other
lakes in our dataset and Y is the [51107 x 1] vector of summer PUD counts. In our case, wj; =

1/d(j,i)
72107 1/d(j,0)

€ [0,1] where d(j,i) is the Euclidean distance between lakes j and lake i.
Furthermore, we also created eight lake amenity spatial lag variables for each lake j using wjA«
where A is the [51107 x 1] amenity k feature count vector across all lakes (there are eight Ay,
one for each amenity type). In addition, we made the variable lag Secchij equal to u;S where u;
is a [1 x 9005] vector of inverse distance weights between lake j (a lake that may or may not
have a summer Secchi measure) and all lakes with a summer Secchi measurement in our
dataset and S is the [9005 x 1] vector of observed average summer Secchi depths across lakes
with observed summer Secchi depths. The spatial lags of summer PUD count, amenity counts,
and average summer Secchifor lake j are higher if j's nearest neighbors (or at least those
neighbors with average summer Secchi measures in the latter case) have higher summer PUD
counts, amenity counts, and average summer Secchi depths, respectively.

While the lag variables summarize characteristics of the lake nearest to j, they do not

indicate if lake j has several lake neighbors nearby or if the lake is spatially isolated on the

landscape (the row normalization of the inverse distances between lake j and all other lakes

median or mean HH in a subwatershed was found by summing the cell values across all cells in a watershed and
dividing total HH income (median or mean-based) in the watershed by the total HHs in in the watershed. For
median age we used the gridded population map. If raster cell j is in block group k then the number of people in
cell j was multiplied by the median age in block group k to generate aggregate age in cell j. Then the median age in
a subwatershed was found by summing the cell values across all cells in a watershed and dividing aggregate age in
the watershed by the watershed’s population.
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obviate any measure of absolute distances between lakes). To summarize j's spatial position on
the landscape relative to other lakes we measured 1) the average distance between lake j and
its five nearest neighbors; 2) the average distance between lake j and its five nearest neighbors
that have summer Secchi measures; 3) the average distance between a lake and its closest

CBSA of lake j's five nearest neighbors; and 4) the average size of lake j's five nearest neighbors.

3.a. The set of lakes with summer Secchi and maximum lake depth measurements is not a
random sample from the population of lakes.

As we noted above, data on summer Secchi depth, our primary water quality variable,
and maximum lake depth, another indicator of lake water quality, are missing for most of the
lakes in our dataset. (Deeper lakes are less likely to transition to the eutrophic state than
shallower lakes, all else equal (Qin et al. 2020).) Therefore, an estimate of Y = f (Z) where Z
includes average summer Secchi and/or maximum lake depth would be based on a limited
number of lakes (whereas data on all other variables we considered for Z are consistently
observed). While omitting lakes without Secchi and/or maximum lake depth from an estimate
of Y = f (Z) would mean a loss in statistical power, it would not affect model inference if the
dropped subset of lakes was a random draw from the population of lakes (Jakobsen et al.
2017). On the other hand, if the lakes with the depth measures was not a random draw from
the entire population of lakes then any estimate of Y = f(Z) where Z includes Secchi and/or
maximum lake depth would produce results that could not be used to infer the relationships

between Y and Z across the population of lakes.
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O’Sullivan and Unwin (2010) suggest two methods for testing whether a sample of
spatial points could reasonably be considered a random sample of the population of spatial
points. To conduct the first suggested analysis, we began by randomly selecting (without
replacement) 9,005 lakes from the dataset of 51,107 lakes 1,000 times (recall there are 9,005
lakes with average summer Secchi depth based on 1995 to 2013 measurements). Next, for each

of the 1,000 samples, indexed by s, we calculated the mean nearest lake distance, given by

dmin,s-

()

Dmins = 5003 (1)
where d(};) = min{d(1;, 1), ..., d(1;, li—1), (L, Lix1), ., d (i, logos) } and d (1, 1;) is the
Euclidean distance between sampled lakes j and .

The mean and standard deviation of d,,;,, across the 1,000 samples are 5,133.9 and 45.0
meters, respectively. Given Jmin= 4,462.7 meters for the 9,005 lakes with average summer
Secchi depth measurements based on 1995 to 2013 measurements (the “Secchi lakes”) there is
an infinitesimally small probability that the Secchi lakes’ spatial pattern was a random draw
from the 51,107 population of lakes (Fig. 5A). A similar analysis of the 9,371 lakes with
measured maximum depth also indicates there is an infinitesimally small probability that the
spatial pattern of lakes with observed maximum depth measures was a random draw from the
51,107 population of lakes (Fig. 6A). Instead, some spatial process likely explains which lakes
have and have not been measured for Secchi depth and maximum depth.

One criticism of the d,,;,, test it only considers each lake’s nearest neighbor. If nearest-
neighbor distances are short relative to distances to all other lakes then the d,,;,, test could be

spurious (O’Sullivan and Unwin 2010). Therefore, we used an alternative test that uses all lake
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distances to verify that the subsets of lakes with average summer Secchi and maximum lake
depth measures are not representative of a random sample of the population of lakes. We first
found the K function for each of the 1,000 random draws of 9,005 lakes (without replacement).
The K function for a sample was generated by drawing a series of concentric circles with radius
d around each lake j in the sample, counting the number of the other 9,004 sampled lakes in
each circle of radius d around lake j, and then estimating the mean density of sampled lakes in
each circle of radius d across all j,

%723° #[sec(j,a)]

9005

K(d) = 9005><(T)

(2)

where S is set of sampled lakes, #[S € C(j, d)] indicates the number of sampled lakes in the
circle C centered on j with radius d, A is the area of the LAGOS region, and (9005/A) measures
the intensity of sampled lakes on the landscape. We also generated the K function for the set of
9,005 Secchi lakes.

Finally, we plotted the 1,000 normalized K functions (called L functions) of the 1,000
randomly drawn samples of 9,005 lakes and the normalized K function of the 9,005 Secchi lakes
for diameters of 100, 200, 300, ..., 70000 meters on the same graph (Fig. 5B). We repeated the
normalized K function analysis for maximum lake depth as well (see Fig. 6B). Evidence that the
Secchi lakes and lakes measured for maximum depth do not represent a random draw from the
population of lakes is indicated by the normalized K functions lying outside the ranges formed
by the 1000 random sample normalized K functions. Instead some unknown spatial process

determined which lakes were measured for Secchi and maximum lake depths.

3.b. Imputing missing summer Secchi and maximum lake depth

14



Because we found that lakes with average summer Secchi and maximum lake depth
measurements are likely not a random sample of all lakes, an estimate of Y = f(Z) when Z
includes average summer Secchi and/or maximum lake depth and does not correct for
measurement selection bias could only be used to infer relationships between Y and Z across
lakes measured for this data and not the population of lakes. Econometricians have developed
several approaches to correct for selection bias in data and make models estimated with the
biased data appropriate for population-level inference. However, we eschewed these
approaches in this research because we have not identified the spatial processes which
determine whether lakes were sampled or not for Secchi and maximum lake depth. Instead we
use multiple imputation (MI) to estimate Secchi and maximum lake depth at the lakes where
these measures are missing.

MI will generate estimates of missing average summer Secchi and maximum lake depth
measures that allow population-level valid inference if average summer Secchi and maximum
lake depth are missing at random (MAR). These data are MAR if the probability of their
“missing”-ness does not depend on unobserved data but rather can be explained by a
combination of Y and other observed data (Jakobsen et al. 2017).

Unfortunately, we cannot prove that the “missing”-ness pattern is MAR given
unobserved data is unobserved (Jakobsen et al. 2017)! However, we generated a random
forest over the observed lake and subwatershed data that accurately predicts whether a lake
has an average summer Secchi or maximum lake depth measure 95% of the time (Table 2). We
believe that this analysis allowed us to conclude that MAR for is a reasonable assumption for

missing average summer Secchi or maximum lake depth data.
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For a continuous variable with a restricted range, such as average summer Secchi and
maximum lake depth, nearest matching or ‘predictive mean matching’ (PMM) is a
recommended MI method (Raghunathan et al. 2001). Our PMM specification sets average
summer Secchi or maximum lake depth at a lake missing one or both measures equal to the
average summer Secchi or maximum lake depth at one of the lake’s ‘nearest’ 5 lakes (a lake in
the near set will always have an observed average summer Secchi or maximum lake depth).
Nearest here refers to average summer Secchi predictive distance, not Euclidean distance.® In
each Ml iteration the lake that ‘donates’ its average summer Secchi or maximum lake depth to
lake j is randomly chosen from the set of j’s nearest 5 neighbors. We created 20 sets of imputed
summer Secchi and 20 sets of maximum lake depths. ®

Finally, we merged each imputed vector of average summer Secchi depth data with the
observed average summer Secchi to create 20 vectors of average summer Secchi depth that

had a value for each lake our dataset, either the observed depth or, if this was missing, an

5 For example, suppose we are imputing average summer Secchi depth. First, a linear model with average summer
Secchi depth as the dependent variable and a covariate vector comprised of Y and all of the potential explanatory
variables is estimated using least squares across all lakes with observed average summer Secchi depth measures.
Second, new model parameters are simulated from their joint posterior distribution under the conventional
noninformative improper prior Pr(B,0%) « 1/0? where B and o? are the least square estimates of the average
summer Secchi depth model. Using the simulated model, average summer Secchi depth is then predicted for all
lakes missing this data. Suppose lake j is missing average summer Secchi depth. Suppose its predicted average
summer Secchi depth is X. The 5 lakes that have a measured average measured Secchi depth closest to X are
matched toj. In imputation iteration 1 one of the nearest 5 lake’s average summer Secchi depth measures is
randomly assigned to lake j, in imputation iteration 2 one of the nearest 5 lake’s average summer Secchi depth
measures is randomly assigned to lake j, etc.

6 We simultaneously impute summer Secchi and maximum lake depth, in both cases using predictive mean
matching (PMM). To implement this simultaneous imputation we used the multivariate Ml method know as MICE.
Under this method summer Secchi and maximum lake depth are imputed iteratively with summer Secchi depth
imputed first, if need be, conditional on maximum lake depth and all potential explanatory variables (using PMM)
and then maximum lake depth is imputed, if need be, conditional on summer Secchi depth and all potential
explanatory variables (using PMM).
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imputed value. We similarly created 20 vectors of maximum lake depth that had an observed or

imputed value for each lake in the dataset.’

3.c. Measuring the accuracy of Secchi and maximum lake depth imputation

We tested Ml accuracy with a 10-fold cross validation analysis. First, we retained the
lakes with an observation for every variable in our dataset, including observed average summer
Secchi and maximum lake depths (“complete case” lakes, N = 6,755). Second, we randomly
divided the complete case dataset into 10 folds (approximately 675 lakes each). Third, we
deleted the observed average summer Secchi and maximum lake depths in the first fold and
then, using the same Ml algorithm described above, we imputed 20 values of average summer
Secchi and maximum lake depth for each lake in the first fold based on the remaining nine folds
of complete data. We repeated this process nine more times, each time deleting the observed
average summer Secchi and maximum lake depths in the it fold of lakes and using the other
nine folds to impute the missing depth values. Therefore, for each lake k in the complete case
dataset we have an observed measure of average summer Secchi depth (s«), an observed
measure of maximum lake depth (dk), the mean ($;) and variance of 20 imputed average
summer Secchi depths, and the mean (cik) and variance of 20 imputed maximum lake depths.

The correlation coefficient between the vectors (s, §) is 0.62 and the root mean square

error between the predicted and observed average summer Secchi depth is 1.39 meters. The

” Technically not every lake in the 51,107-lake dataset was assigned an average summer Secchi depth measure if it
was missing an observation. If a lake was missing data on a variable used in the Ml process than it was not assigned
an imputed average summer Secchi depth. The same issue applied to the assignment of an imputed maximum lake
depth to lakes missing this data. Therefore, we created 20 vectors of average summer Secchi depth that had a
value for almost every lake in our 51,107-lake dataset
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correlation coefficient between the vectors (d, c?) is 0.34 and the root mean square error
between the predicted and observed maximum lake depth is 8.63 meters. Therefore,
predictions of maximum lake depth are less accurate than predictions of average summer
Secchi depth. As can be seen in Fig. 7, the absolute deviations between the observed and
predicted average summer Secchi depth and observed and predicted maximum lake depth

increase in depth.

4. Methods

In this section we first use recreational demand theory to explain what type of variables
should be part of the explanatory variable Z vector. Second, we describe how our dataset can
be used to construct the variables consistent with theory. Third, we describe several methods
for selecting the parsimonious set of variables that can be used to explain lake visits (or more
appropriately, our proxy for lake visits). Finally, we describe the functional form we assumed
when estimating our lake visitation models (hereinafter we refer Y = f(Z) as a lake visitation

model despite Y being a proxy for lake visitation).

4.a. Theoretical foundation for an aggregate visit site model

Assume two recreation locations (e.g., lakes) on a landscape, indexed by j. Assume a set
of households on the same landscape, i = 1,...,I. Household i’s utility is defined over the number
of visits to each recreation site and the consumption of z units of the numeraire good. We
assume the household’s objective is to,

maXX’Z ui(Xi, Q, Zi, Si) St: PiXi + Zj < Mi (3)
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where X; = (x1i,x2i) indicates the number of times i visits each site j, Q = (g1,g2) indicates the level
or density of attributes at each site (e.g., water quality, recreational amenities, quality of vista,
etc.), Pi = (p1i,p2i) indicates the household’s cost to visit each site in terms of z units (cost
includes actual outlays and any opportunity costs), €; = (&;;, £2;) captures unobserved factors
that influence household location preferences, and M; is the household’s income. € is known to
the household but unknown to the modeler of demand (this theory section follows von Haefen
and Phaneuf 2005).

Assuming consumption of the numeraire good is essential to the household (z must be

greater than 0), the first-order Kuhn-Tucker conditions for utility maximization are,

u,;(X;,Q, g, M; — P,X;) =6 ()
u;i(X;,Qe;,M;—P;X;) .
= ji orj=1,2 5
Uz (X;,Q&,M;—P;X;) 23-«]—5 L / ’ (5)
MRS between Cost of visiting j
atriptojandz an additional time
xj;j=0 forj=1,2 (6)
WX Qe Mi—PiXy) ] _ .

where §; is i's marginal utility of money. Therefore, i’s number of visits to each recreation
location is given by the vector of X that satisfies (4) — (7),
X; = (x1(Q P, &, M), x5(Q, Py, g, M) (8)
The household comes up with X} by comparing their willingness to pay (WTP) for a visit
to each site to the cost of a visit to a site. The left-hand side of eq. (4) indicates the price the
household (HH) is willing to pay (in terms of sacrificed z units) for an additional visit to site j and
the right-hand side of the equation indicates the actual price of a visit (again, in terms of

sacrificed z units). Assume x7; = 0. In this case, i's WTP for even 1 visit to site 1 is strictly less
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that what it costs to visit. Further, assume x5; > 0. In this case, i's WTP for the last visit is equal
to pj2 and WTP values for previous visits to site 2 were greater than pj,.

Now assume py; = p,; and both x{; and x3; are greater than 0. In this case, the
household will allocate its visits across j such that the marginal utilities from the last visit to
each j are equal. Because i’s utility increases in site quality g, price equality means that i will
visit the site with the highest quality the most. Now assume q; = g, and p;; varies across j.
Now the household will maximize utility by visiting the least costly site more than the costlier
site. Simultaneous variation in g;and p;; across j creates a more varied set of choices but the
general pattern holds: sites with better quality and less costly to visit will garner the most visits
from j, all else equal

Suppose the site visit data we observe is not defined at the household level. Rather
assume we only observe the welfare maximizing total number of visits to site j made across all
households,

Vi =Yl %(QP, M) =0 (9)

[
Observed

Therefore, aggregate demand for j is also a function of Q, vectors of P;, vectors of €;, and the
vector M. Just as we do not observe individual household visits to each site, we do not observe
vectors of Piand M. However, if we can find data that allows us to approximate whether visiting
site j is expensive or not for a representative household (a representation of the vectors P;) and
the income of the representative household that may or may not visit j (a representation of M)

then the aggregate site visit model,
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is consistent with assumption of utility-maximizing households. In equation (10) the quality of j
and the representative cost to visit j (g; and p;, respectively) have explicitly been separated from
the quality of all other j and the representative cost to visit all other j (Q-j and P, respectively).
Finally, M is the representative income of households that may or may not visit j and €; are the

unobservable factors that influence household location preferences that may or may not visit j.

4.b. The set of variables that could explain visits to a lake

We can use published lake and park visitation studies to guide us in the selection of
variables to represent gj, Q;, pj, and P.;. Fortunately, our lake-level dataset is rich with the
suggested variables. In many lake and park visitation studies g; includes a suite of variables that
quantify the recreational activities and related infrastructure available at site j and j’s water
quality, depth, and size (e.g., Parsons et al. 2003, Fleming et al. 2008, Egan et al. 2009,
Vesterinen et al. 2010, Kasul et al. 2010, Keeler et al. 2015, Schneider et al. 2005, Allan et. al.
2015, Ziv et al. 2016). While a positive relationship between lake use and its water quality is
usually found (e.g., Egan et al. 2009, Vesterinen et al. 2010, Keeler et al. 2015), there are
exceptions (e.g., Ziv et al. 2016). Many park visitation models (e.g., Donahue et al. 2018, Zhang
and Zhou 2018, Hale et al. 2019) also include measures of land cover (e.g., percent of site with
tree canopy, percent of site that is vegetated) and climate at the site to characterize the quality
of the site’s vista and recreation experience. Therefore, we consider land cover around the lake,
the lake’s climate, and the hydrological system around the lake (e.g., the extent and density of

wetlands and streams around the lake) as descriptors of g; as well.
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Given that summer PUD counts at lake j (our proxy for lake visits) cannot be connected
to specific households we cannot explicitly estimate p;, the representative cost of visiting j.
When faced with a similar difficulty, previous literature has used population density around
lakes (in our case, the lake’s subwatershed) (Keller et al. 2015, Zhang and Zhou 2018, Hamstead
et al. 2018, Donahue et al. 2018) and lake’s distance to the nearest population center (Zhang
and Zhou 2018) as proxies for p;. Lakes in or near areas of greater population density will
contain many households with low p; due to close proximity to the lake. This should mean
higher than average summer visits (or more precisely, summer-time PUD counts) for these
lakes, all else equal, relative to lakes in less dense landscapes and far from population centers
(Keeler et al. 2015, Ziv et al. 2016). Such isolated lakes present low-cost recreation
opportunities for relatively few households. In addition, past lake visitation studies have found
that households occasionally visit multiple lakes on a recreation trip (e.g., Keller et al. 2015).
Households displaying such behavior will find visiting j costlier if it is isolated from other lakes
on the landscape. Therefore, we can use average distance between j and its nearest 5
neighbors as an additional indicator of the typical cost of visiting j. Finally, the representative
household’s cost of visiting a lake will be affected by the lake’s accessibility. Lakes with parking
lots, several access roads, and nearby stores and other built infrastructure will be less costly
and easier to visit (i.e., have lower p; for the representative household). Past research has
measured site accessibility with the road density around the site or proximity to public
transportation (Zhang and Zhou 2018, Hamstead et al. 2018, Donahue et al. 2018). We can use
the percentage of a lake’s 500-meter buffer area in developed land covers (e.g., roads,

buildings, etc.) as a proxy for lake accessibility.
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We can use the same variables that define quality at lake j to define the quality of j's set
of potential visit substitutes. As discussed in the theory section, households choose among a set
of recreation sites to visit; in this case, the choice is among a set of lakes. Presumably, a
household that only allocates a few hours for a visit to a lake will choose among the set of lakes
within the household’s local landscape. On rarer occasions, the household may plan a multiday
trip that could include a visit to a faraway lake or two (Vesterinen et al. 2010). In these cases,
the set of lakes in the choice set is defined over a much larger region. Therefore, j’s competition
is generally its neighboring lakes and rarely lakes from very far away. Accordingly, the quality of
j's substitutes, given by Q_;, should mostly be defined by the quality of lakes near j and less so
by the quality at lakes far from j. Therefore, we can include the spatially lagged Secchi and
amenity feature count variables are part of Q.8

Above we suggested that the representative household’s p; could be indicated by j's
relative proximity to population centers. Therefore, we can use the isolation of j relative toj’s
substitutes as a measure of P_;. For example, suppose lake j is 100 miles from the nearest
metropolitan area but its 5 nearest lake neighbors are, on average, only 50 miles from the
nearest metropolitan area. In this case, assuming distance to a lake is the strongest indicator of
visit cost, ° p; > P_; for a large swath of households on the landscape. Presumably this will mean
lest visits to j, all else equal. Therefore, the average distance between a lake and its closest

CBSA of lake j's five nearest neighbors will be part of P_;.

8 Interestingly, other than Egen et al. (2009), none of the cited lake and park visitation studies explicitly control for
the impact of site substitutes on visitation rates to site j.

% Vesterinen et al. (2010) modeled lake visitation using data from a survey. They used distance between i’s home
and the nearest lake site as a measure of pj;.
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We used j's subwatershed-level household median income to represent M;, the income
of the representative household that may or may not visit j. While a lake can attract visitors
from across the US, we assume that most visits to a lake are from local people (e.g., Kasul et al.
2010, Vesterinen et al. 2010). Therefore, we believe median household income in j’s
subwatershed is the best estimate of representative visitor income we have. Finally, to control
for taste preferences of a recreation site’s most likely visitors, past literature has also included
the racial identities, poverty status educational status, and ages of people living in the areas
immediately around site j (Zhang and Zhou 2018, Hamstead et al. 2018, Kasul et al. 2010,
Vesterinen et al. 2010). To replicate this practice owe can include j’'s subwatershed-level
measures of educational attainment, poverty, racial mix, and age in our lake visitation model.
Let the set of taste preferences that affect lake visits controls be collected in vector S.

Therefore, based on recreation demand theory and a review of the lake and park
visitation modeling literature, our lake visitation model has the form,

Yj :f(q]’Q—]lp]lP—]’M]'S]’la‘gY]>+E] (11)
Z

where gj, Q;, p;, P-, Mj, and S; can be made up of the variables discussed above and lag Y; is j's
spatial lag of Y. See Table 3 for a complete list of variables that, according to our review of the
literature, can be used to describe gj;, Q., pj, P, Mj, and S;. Let this collection of variables be
called the literature review-informed Z or Zy.

Please note our visitation model cannot use the preferred Vj*, as we do not observe it.
Instead we use its observed proxy Y;. However, as we discussed above, we can interpret (11)’s

estimated marginal effects as lower bounds on the impact of changes in explanatory variables
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on visits to a lake. Finally, we include /ag Y; in our visitation model because a Moran’s | test of
summer PUD count’s spatial pattern indicates we can reject the null hypothesis that there is
zero spatial autocorrelation in the dependent variable.’® Therefore, including a spatial lag of Y
in model (11) can reduce the bias in the estimate that the otherwise uncontrolled spatial

autocorrelation could cause.!!

4.c. Using machine learning rather than literature and theory to select variables to include in Z
We use two ML techniques that are designed to identify the parsimonious subset of

explanatory variables that accurately predict out-of-sample responses to generate alternatives
to Z,i for several reasons. First, a more parsimonious Z than Z, is likely to improve the 1)
policy-relevance and 2) out-of-sample predictive accuracy of estimated visitation model (11).
With regard to the first point, we believe that research becomes more relevant to policy-
makers and concerned citizens if the scope of the model is limited to the most important
variables. A model with too many variables and too much detail is likely to be glossed over and
disregarded due to limited attention spans in the policy world. As to the second point, an
estimate of model (11) based on the literature-informed Z is likely to be less predictive of out-

of-sample data summer PUDs than an estimate of ML-informed Z due to a greater extent of

10 Global Moran's | Summary of summer PUD count from ArcGIS. The statistic ignores summer PUD counts at lakes
100,000 meters or more from lake j. Moran's Index: 0.001328; Expected Index: -0.000020; Variance: 0.000000; z-
score: 4.900560; p-value: 0.000001. Therefore, we can reject the null hypothesis that there is zero spatial
autocorrelation present in summer PUD count.

11 We suspect that much of this spatial clustering in summer PUD counts can be explained by the spatial clustering
of explanatory variables. However, even after accounting for the spatial clustering of explanatory variables, we
suspect that popularity of lake j is influenced by the relative popularity of its neighboring lakes and vice-versa. For
example, when people visit lake j they learn of nearby lake k and therefore, may be more likely to visit k in the
future. Further, lake k may be an option for a visit when j is too congested (i.e., very popular) for a recreator’s
liking.
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over-fitting in estimate of model (11) based on the literature-informed Z than in the estimate
based on the ML-informed Z (James 2013).

A second reason to use ML-informed Zs is to overcome the model selection bias in
previous lake and park visitation model literature. Most of these studies refer to each other,
reinforcing the notion that a core set of explanatory variables, such as water quality and
recreation attributes, are the appropriate variables to use in visitation studies. However, largely
unexamined combinations of other lake and subwatershed-level attributes may just as
important or even more important in explaining and predicting lake visits. Therefore, running
the variable-selection ML algorithms over all the lake and subwatershed-level in variables in our
dataset, not just the variables that agree with the literature, can mean models that better
predict summer PUD counts than those suggested by the literature.

The least absolute shrinkage and selection operator (LASSO) and random forests are the
two ML techniques we use to generate alternative parsimonious Z vectors.*? The coefficients on

Z, contained in the vector B of length P, that solves,
.1 1
ming B1Ly £(F, BZ) + A 556 | (12)
are the (single) LASSO coefficients where 2’ includes all potential explanatory variables (2’

contains P variables). In this case, the function ¥ is the negative of the Poisson log-likelihood

function because the dependent variable, summer PUDs, are count data. The term AZ§=1|[3P|

12 Egan et al. (2009) is the only lake visitation modeling exercise that we know of that systematically searched for a
parsimonious set of explanatory variables. They estimated a mixed-logit model with a lowa household survey of
lake visits many times, experimenting with the form of 5 water quality measures (e.g., Secchi depth enters the
model linearly in some specifications and logged in others) and the combination of water quality measures in the
model (e.g., in one model Secchi depth and Chlorophyll levels are the water quality measures, in another model
Secchi depth, Chlorophyll, and bacteria are the water quality measures). Their preferred model generates the loest
log-likelihood value when estimated with maximum likelihood. They then interpret their preferred model.
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is a penalty that increases in the sum of the absolute magnitudes of coefficients on Z’ where
the modeler chooses the value of the tuning parameter A. Therefore, the minimization problem
(12) exhibits a tradeoff: while the ‘min’ operator has incentive to choose the B’s, even very
large coefficients, that minimize £, there is a competing incentive to keep the number of
nonzero B’s to a minimum; otherwise the penalty function’s value can explode (assuming 4 >
0). In other words, problem (12) selects the subset of potential explanatory variables that best
explain Y —their coefficients are nonzero — given a constraint of parsimony. The greater the
value 4, the tighter the parsimony constraint.

We set A equal to the A that minimizes the 10-fold mean cross validation error found
when solving (12) over a subset of observations from the dataset (the “training” set). Then we
solved (12) using A,,;, with the subset of observations not used to find 4,,;,, (the “test” set).
The resulting variables with nonzero estimated coefficients form the parsimonious Z
constructed with the single LASSO (the single LASSO-informed Z or Zs).

One of the main purposes of this research is to determine to what extent lake water
guality, as measured with summer Secchi depth, is related to lake visits in our study area. If the
single LASSO-informed Z does not include average summer Secchi depth then we have gained
information that the relationship is relatively weak. However, for policy analysis purposes,
assume we want to force the inclusion of summer Secchi depth in our LASSO-informed Z.

We could do this by adding average summer Secchi depth to the single LASSO informed
Z ex post. However, this process could lead to omitted variable bias when we estimate model
(11) (Urminsky et al. 2015). Instead we used the double LASSO method to create a LASSO

informed-Z that ensures the inclusion of average summer Secchi depth but avoids omitted
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variable bias (Urminsky et al. 2015). In the first step of the double LASSO method we repeated
the single LASSO algorithm without including average summer Secchi depth in Z’. In we
repeated the single LASSO algorithm where summer Secchi depth is the dependent variable and
all other potential explanatory variables are in Z’ (the second stage ¥ is still a Poisson PDF given
that summer Secchi is truncated at 0). The parsimonious Z in this case includes variables with
nonzero coefficients in either solution to (12) and average summer Secchi depth. Therefore, the
double LASSO-informed Z includes average summer Secchi depth, variables that strongly
predict Y, and variables that strongly predict average summer Secchi depth. The inclusion of
this last set of variables means the estimate of (11) with the double LASSO-informed Z or Zp, is
less likely to be affected by omitted variable bias.

We also use a random forest algorithm to form an alternative parsimonious Z. Unlike
LASSO, random forest (RF) analysis does select a subset of the strongest predictors of Y.
Instead, among other output, RF analysis ranks all variables from Z’ in order of prediction
importance. In RF analysis, the importance of a variable is measured by the average increase in
out-of-sample predicted mean square error across the forest of decision trees when a variable’s
values are converted to random noise. In this algorithm a subset of data observations are used
to build the trees (the “train” set) and the remaining observations are used to evaluate tree
precision (the “test” set).

We use the R package VSURF to select the subset of the most important variables to
include in RF-informed Zs. VSUREF iteratively builds a RF or series of RFs over Y = f(Z) where at
each iteration, Z has been winnowed down to a smaller set of variables based on a variable

importance score (Genuer et al. 2015). In VSURF’s first RF iteration, the variables from Z’ that

28



meet a variable importance threshold are retained (see Genuer et al. 2015 for threshold
details). Let this smaller set of variables be given by Z*. In the next step, called the
interpretation step, the VSURF routine builds a series of RFs over subsets of Z*#, the first subset
being made up of the most important variable in Z*#, the second subset being made up of the
two most important variables in Z*#, etc., and then chooses the subset of variables that creates
the trees with the smallest out-of-sample error. Let this winnowed set of variables be given by
Z*. Finally, VSURF constructs an ascending sequence of RF models, starting with the most
important variable in Z# and then adding one variable at a time, until the decrease in out-of-
sample error created by a variable’s addition no longer passes a threshold. Therefore, this so-
called prediction set, is made up of the first m variables from Z*# where Z*'s variable order is
determined by variable importance. Let this last winnowed set of explanatory variables form

the VSURF-informed Z or Zysugrr.

4.d. The statistical model we use to estimate Y = f(Z)
No matter the makeup of Z, the dependent variable in every case is a count variable.
Therefore, we estimate the probability that ¥; = k given the exogenous variable set Z; with the

Poisson PDF,

~Aj 2k
i,
Pr(Y; = k|Z)) ={ % k=012 (13)
0 otherwise

where we set 4; equal to exp(Zj B). The coefficient vector 8 that maximizes the log likelihood
function of (13) given Z is the value of B that makes the observed Y the most probable. We

found statistical evidence that the count data is over-dispersed after estimating various
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iterations of Y = f(Z) with (13) (estimated E(Y) is not equal to estimated Var(Y)). Estimated
Poisson models with over-dispersed data can generate biased results. However, we use robust
standard errors with our Poisson estimator. This step renders Poisson estimators robust to
over-dispersion (i.e., estimates of (11) using the Poisson estimator are similar to estimates of

(11) using the negative binomial estimator; see Wooldridge 2001).

5. Results
5.a. The explanatory variables we include in parsimonious Z

We generated two sets of Zs,, two sets of Zp,, and two sets of Zysyre. The first Z’s in each
set were generated using half of the lakes with a complete set of observed data, including
average summer Secchi and maximum lake depth (there are 6,553 lakes with a complete set of
data; therefore 3,726 lakes were used to generate the first set of ML-informed Z’s). See Tables
4-5 for the variables in Zst,Limited, ZbL Limited, aNd Zvsure,Limited Where ‘Limited’ refers to the dataset
with a complete set of observed data.

We generated the second Z’s in each set using half of the dataset that included imputed
average summer Secchi and maximum lake depth when these data were missing (the IM-
augmented dataset has 39,582 complete cases; therefore 19,791 lakes were used to generate
the second set of ML-informed Z's). Recall there are 20 estimates of average summer Secchi
and maximum lake depth at each lake in the augmented dataset. If average summer Secchi or
maximum lake depth was observed at a lake then each of its 20 estimates of average summer
Secchi or maximum lake depth are equal to the observed values. For all other lakes, the average

summer Secchi or maximum lake depth values varies. Therefore, when using the Ml-augmented
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dataset, we solve the single LASSO, double LASSO, and VSURF problems twenty times; each
time using a unique set of imputed summer Secchi and maximum lake depth values. Let
Zs1,Augmented, ZDL,Augmented aNd Zvsurr,Augmented D€ COMprised of variables that were selected at
least 15 out of the 20 times by the respective ML methods when run over the 20 versions of the

augmented dataset. See Tables 4-5 for the variables in each of these ML-informed Z’s.

5.b. Estimates of Y = f(Z)

In Table 6 we present the Poisson estimates of Y = f(Zyit,Limited), Y = f(Zow Limited), Y =
f(Zvsurr Limited), and Y = f(Zpr+vsurr Limited) (the Z formed by the union of Zpy Limited aNd ZysurF, Limited)
over the half of the limited dataset (the dataset of lakes with observed depth measures) not
used to generate the ML-informed Z’s. We estimate the visitation model over the remaining
half of dataset to avoid the incorrect standard error estimation generated by using the same
data to select variables and estimate a model (Leamer 1983, Egan et al. 2009).13

In Table 7 we present the Poisson estimates of Y = f(Zit,augmented), Y = f(ZoLAugmented), Y =
f(Zvsurr,augmented), and Y = f(ZpL+vsurr,augmented) generated with the half of the augmented dataset
not used to construct the ML-informed Z’s. The coefficients reported in Table 7 when Z is equal
to ZLit, Ziit,Augmented, OF ZDL+VSURF,Augmented Fepresent the mean of 20 model estimates (recall there
are 20 unique sets of summer Secchi or maximum lake depth values in the augmented dataset).

The Ml routine in Stata generates robust standard errors that account for this averaging

13 We could estimate Y = f(Z,;) over all 6,553 observations in the limited dataset given we did not use the data to
select Z;;;. However, using the same set of data to estimate all models makes comparisons easy.
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process. The coefficients associated with Zysurr,augmented COMe from a single estimation given

that this version of Z does not include average summer Secchi or maximum lake depth data.

5.c. Interpreting results across lakes with measured summer Secchi and maximum depths

Not surprisingly, the ML informed-Z are much more parsimonious than the literature
informed Z. Over the dataset limited to lakes with observed summer Secchi and maximum lake
depths (the “limited dataset”), the single LASSO and VSURF-informed Z’s, Zsy, Limited and
Zysurr,Limited, iNClude 2 and 5 variables, respectfully, whereas Zii: contains 42 variables. Neither
ML algorithm selects average summer Secchi depth selected, indicating that it is not a
particularly strong predictor of summer PUD counts. Instead lake area and amenity feature
counts make up the bulk of the single LASSO and VSURF-informed Z's.

Of the 16 covariates selected by the double LASSO over the limited dataset, 13 were
selected in the stage with average summer Secchi depth (the focal independent variable) as the
explanatory variable. Many of the variables selected in this stage describe the land cover and
hydrological features around the lakes. Historic mean annual rainfall in the lake’s subwatershed
was also selected as a second stage covariate. These selections are not surprising given 1) land
cover and use and rate of water flow in areas surrounding a lake largely determines nutrient
flow into the lake (e.g., Vanni et al. 2011) and 2) under most circumstances, the rate of nutrient

loading impacts water clarity (Mazumder and Lean 1994).14

14 We can also say that average summer Secchi depth is not a “randomized treatment” across the lakes measured
for summer Secchi depth, as the double LASSO found 13 covariates that predict average summer Secchi depth.
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Our preferred Zs are those that best predict PUD counts at a lake according to 10-fold
cross validation. Over the limited dataset, the double LASSO variable selection procedure
generates the Z that returns the lowest mean root mean square error (RMSE) (see Table 8; we
use the mean RMSE after removing the two largest RMSE outliers). Using this Z in our summer
PUD count model, we find that an additional meter of Secchi depth, based on 1995 and 2014
measurements, was associated with 11.2% increase in summer PUD count during the 2005 to
2014-time period at lakes with measured summer Secchi and maximum depths. Assuming a
linear relationship with a non-zero y-axis intercept between summer visits to these lakes and
summer PUD counts, this is a lower bound estimate of the impact of higher Secchi depth on
summer visits to these lakes during the 2005 to 2014 period.

Of the 3,276 lakes in the “testing” subset of the limited dataset, 130 lakes had one
beach feature and the rest had 0 beach features. Therefore, we can treat the beach feature
count variable in the double LASSO-informed Z as a dummy variable: a lake with a beach
feature had 1.14 times the summer PUD counts between 2005 and 2014, all else equal, relative
to a lake without a beach feature. Again, this is a lower bound on the average difference in
summer visits to summer Secchi and maximum-depth measured lakes with and without
beaches. No other lake amenity feature count was included in Zpy,Limited.

Our summer PUD count model estimate with Zpyimited also indicates that Secchi and
maximum-depth measured lakes surrounded by denser networks of forest, wetlands and
streams had less summer PUDs than lakes with less dense networks of these feature, all else
equal. We suspect that this means that people find lakes surrounded by development (e.g.,

roads, parking lots, and buildings) and grasslands, the land covers that persist in the absence of
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forests, wetlands and streams, easier to access, all else equal. In addition, the estimated model
indicates that lakes measured for Chlorophyll at least once between 1995 and 2014 had 1.73
times the summer PUD counts than lakes not measured for Chlorophyll levels. We suspect this
indicates that water quality at popular lakes was more scrutinized than at less popular lakes.

Further, the double LASSO, when run over the limited dataset, selected several spatial
lag covariates. Lakes that were surrounded by cleaner lakes (i.e., lakes with higher lag Secchi)
and that were closer to lakes measured for summer Secchi (i.e., lakes with lower average
distance to the nearest 5 lakes with a summer Secchi measurement) had less summer PUD
counts than other lakes, all else equal. In other words, when lake j's nearby competition had
relatively clearer water or was at least monitored for its clarity, then lake j got less visits, all else
equal.

However, this does not mean all forms of nearby competition meant lower summer PUD
counts, on average, for lakes in the limited dataset. We also found that the closer lake j was to
lakes with higher summer PUD (/ag Y) and toilet and boat launch feature counts, the more
summer PUDs it had, all else equal. These relationships suggest that “star” lakes generated
positive spillover effects that ameliorated the negative effect nearby competition had on lake
j's summer PUD count: visitors to popular lakes, potentially because of their facilities, tended to

visit nearby lakes at a higher rate than was otherwise expected.

5.d. Interpreting results across all lakes
The ML techniques run over the dataset that includes imputed depth measures (the

“augmented dataset”) also generates much more parsimonious Z then Zyi. The single LASSO,
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double LASSO, and VSURF-informed Z’s have 13, 28, and 5 variables, respectfully, compared to
the 42 variables in Zi.. Lake size, amenity feature counts, landscape conditions around the lake,
socioeconomic conditions in a lake’s subwatershed, and the spatial lags of amenity feature
counts make up the bulk of the augmented dataset’s ML-informed Zs.

Other than the double LASSO-informed Z, which includes average summer Secchi depth
by definition, the ML techniques run over the augmented dataset do not select the water clarity
measure. The finding that average summer Secchi based on 1995 to 2013 measures was not a
strong predictor of 2005 to 2014 summer PUD counts is common across both the limited and
augmented datasets. Unique to the Zsi,augmented aNd Zpi,augmented VErsus their limited dataset
analogs are the presence of some socioeconomic variables. Another difference relative to the
previous analysis: Zsi,augmented aNd ZpL,augmented are longer (contain more variables) than their
analogs created from the limited dataset.

Our preferred Z over the augmented dataset is the one that generates the lowest
average RMSE over 20 sets of 10-fold cross validations or 200 RMSEs (recall we estimate model
(11) over each version of the augmented dataset Z twenty times; once for each unique iteration
of the average summer Secchi and maximum lake depth vectors ).%* In this case the VSURF
generates the preferred Z (as measured by mean RMSE less outliers; Table 9). However,
because Zysurr,augmented does not include average summer Secchi depth we use the next best Z

according to average RMSE criteria, the double LASSO + VSURF-informed Z. We do not sacrifice

15 Except for VSURF-informed Z from the augmented dataset. This Z does not include the imputed average summer
Secchi or maximum lake depth.
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much predictive power by using Zpi+vsurr,augmented rather than Zvsurr,augmented as the difference in
average RMSE between the two is very small.

We found that for every additional meter of average summer Secchi depth based on
1995 to 2013 measures, summer PUD count between 2005 and 2014 across all lakes in the
dataset increased 7.3% (and actual visits likely even more). Please note that the marginal
impact of water clarity on summer PUD counts was smaller when considering all lakes versus
lakes with measured depths (at least across our preferred models). Further, across the entire
dataset, deeper lakes and lakes with more amenities were also visited more than shallower and
less amenity-dense lakes, all else equal. The impacts of beach and hotel amenities summer PUD
counts in the augmented dataset are particularly impressive. If we treat the beach and hotel
variables as dummy variables, a lake with a beach or a hotel had 1.54 times or 6.57 times the
number of PUDs than lake without these amenities. These are larger amenity affects than we
saw across the lakes in the limited dataset.

Across the augmented dataset, lakes with more nearby competition (as measured by
average distance to j's nearest 5 lakes) had less PUDs, all else equal. (Recall that across the
lakes in the limited dataset the competitive pressure came from nearby lakes that were cleaner
and measured for clarity, not all lakes in general.) However, once we accounted for the relative
popularity of the neighboring lakes and their amenity features, the competitive pressure of
nearby lakes on lake j’s PUD count was less pronounced. In other words, high levels of spatial
clustering meant less PUDs for all lakes in the cluster, on average. However, the deleterious
effects of clustering on j’s PUD count was ameliorated if one or more nearby competitors is a

“star”. (We saw similar spillover effects across lakes in the limited dataset.) Further, across the
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augmented dataset, lakes with more developed covers (e.g., pavement, buildings) tended to
have more summer PUDs than lakes with less developed space (e.g., forest, wetlands, and
agriculture). We found a similar impact of developed land extent on PUD counts across the
lakes in the limited dataset as well.

ZpL+vsuRF,Augmented iNcludes three variables that describe socioeconomic conditions in a
lake’s subwatershed. If we assume most PUDs and, therefore, visits to a lake, are made by local
residents, these variables can provide some clues on the popularity of lake recreating across
socioeconomic classes (or at least across the subset of the population that post pictures on
social media). Of the three socioeconomic variables Zpi+vsurr,augmented, Only subwatershed-level
median household income is statistically significant. However, the magnitude of the income
effect is small: for every $1,000 increase in a subwatershed’s median household income, visits
to a lake in the subwatershed increased by at least 1.1%. Despite the presence of
socioeconomic variables in ZpL+vsurr,Augmented, SUMMer visits, or at least summer PUD counts,

were not strongly associated with any socioeconomic group.

5.e. Summary of main results

To summarize our main results, the lakes measured for average summer Secchi and
maximum lake depth are not a random sample of all lakes in the dataset. Therefore, our ML
constructed covariate vectors and lake visit model results differ across the two sets of lakes.
According to our analysis, at lakes measured for average summer Secchi and maximum lake
depth, an additional meter of average summer Secchi depth during the period 1995 to 2013

was associated with 4% to 11% more summer PUDs from 2005 to 2014 (this is the range across
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Zyit,Limited, ZpL Limited, aNd ZpL+vsurr,Limited). COnversely, the marginal impact of a meter in average
summer Secchi depth across all lakes in the 17-state region ranged from 7.0% to 8.5% (this is
the range across Ziit, augmented, ZpL, Augmented, aNd ZpL+vsurF,Augmented). AS We mentioned above,
these are lower bound estimates on average summer Secchi’s impact on visits assuming a linear
relationship between summer PUDs and summer visits. Further, In the smaller set of measured
lakes, an additional meter of maximum lake depth — another indicator of lake water quality —
led to a 1.4 to 1.9% increase in the summer PUD count (this is the range across Ziit, Limited,

ZpL Limited, aNd ZpL+vsure,Limited). Across the full set of lakes, an additional meter in maximum depth
meant a 3% in 2005 to 2014 summer PUDs, all else equal (this is the range across Ziit, Augmented,
ZpL, Augmented, aNd ZpL+VSURF,Augmented).

While the impact of water quality variables on summer PUD counts is generally the
same across both sets of lakes, the impact of lake amenities on PUD counts differs substantially
between the two sets of lakes. First, the ML-informed Z’s created with the augmented dataset
more often included amenity variables as important predictors of summer PUD counts. Second,
the coefficients on the lake amenity variables in the lake visit model tended to be larger when
estimated over the full set of lakes. We believe these modeling dissimilarities can be explained
by the differences in amenity supply across the two sets of lakes. Lakes measured for maximum
lake depth and Secchi depth between 1995 to 2013 had greater amenity density and less
variability in amenity density than lakes from the full set.® Therefore, given that we have

shown that amenities tend to draw visitors to lakes, the relative scarcity of amenities across all

16 14.5% of lakes in the measured set of lakes had one or more amenity counts whereas the rate was 3.9% across
the full set of lakes.
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lakes in the 17-state region means lake amenities will explain PUD counts much more strongly
across the larger set of lakes than across the smaller set of lakes.

The two sets of lakes also have different competitive pressures. While both sets indicate
that nearby lakes with high amenity and PUD counts create a positive spillover effect, only the
larger dataset indicated that nearby competition in of itself reduced PUD counts at a lake.
Namely, an additional 1 km in the average distance to j's nearest 5 lakes increased PUD counts
atj by 9.7% to 12.9% across all lakes but had little to no effect across the smaller set of lakes
with measured Secchi and maximum depth. Further, cleaner lakes unequivocally created a
positive PUD count spillover effect in the augmented dataset. This was not the case across the
smaller set of lakes.

Otherwise, results from both sets of data were relatively consistent. For example, across
both sets of lakes we find that lakes surrounded by greater amounts of developed land covers —
roads, parking lots, buildings, etc. — had higher PUD counts, all else equal. This suggests that
easy access to lakes is an important driver of visits. Further, not surprisingly, larger lakes had

more PUDs, all else equal, across both sets of data.

6. Robustness checks
6.a. Instrumenting for average Summer Secchi depth

In our estimates of Y = f(Z) when Z includes summer Secchi information we assumed
that summer water quality impacted summer lake visitation, or more appropriately, summer
PUD counts, but lake visitation rates did not influence water quality. However, more popular

lakes may face more pollution pressures. Therefore, the causal links between lake visitation and
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lake water quality may have run both ways. To test whether endogeneity issues could be
affecting the estimate of Y = f(Z) when Z includes average summer Secchi depth we can use the
instrumental variable (V) approach. In this case we assume that Secchi depth at a lake is the
endogenous variable explained by the other variables in Z and an excluded instrument or two.
A valid instrument helps explain summer PUD count via average summer Secchi depth
but not directly. '’ As previous research has found and as the second stage of our double LASSO
analyses confirmed, a lake’s average summer Secchi depth is greatly influenced by its
surrounding land use and water flow regime. Therefore, we experiment with instrumenting
average summer Secchi depth with stream density in the lake’s subwatershed and the amount
of agriculture land use in its 500-meter buffer. Greater stream density around a lake means
polluted runoff can more easily be conveyed into a lake. Further, lakes surrounded by
agricultural land — a source of phosphorus and nitrogen — tend to have lower lake quality as
well, all else equal (cite). We surmise that while stream density in a lake’s subwatershed and
the presence of agricultural land in a lake’s 500-meter buffer directly impacts the lake’s water
quality, and therefore, indirectly impacts its summer PUD count, it does not directly affect visits.
Therefore, we re-estimate the visit model with stream density and percentage of
agricultural land in the 500-meter buffer as instruments. However, because the limited and
augmented dataset Zp.'s and Zpr+vsurr’s include stream density we cannot use the IV method to
re-estimate our preferred visit models. However, given that the estimated impact of average

summer Secchi depth on summer PUD counts is fairly consistent across all versions of Z, IV

17 A valid instrumental variables approach requires only that the instruments (i) be sufficiently correlated with the
endogenous variable of interest and (ii) not be correlated with any unobserved determinants of the outcome of
interest.

40



analyses limited to Zut's should still be able to tell us if 1) reverse causality may be an issue in
the summer PUD count — water quality relationship and 2) the direction of the bias if reverse
causality is an issue.

The IV Poisson estimated coefficient on average summer Secchi depth from Zyit Limited
is 2.47, or, for every one meter increase in average Summer Secchi depth, summer PUD count
increases, on average, by 1178%. While this coefficient is obviously larger than its non-IV
analog, we found that the mean of the IV Poisson estimated coefficients on average summer
Secchi depth from Zyit,augmented is less than its non-1V analog (recall that there are 20 coefficient
estimates for each variable in Zyit,augmented). Namely, in the non-IV version of the Poisson model
estimated with Zyit augmented, @ ONE meter increase in average summer Secchi depth was
associated with a 2005 to 2014 summer PUD count increase, on average, of 8.5%. In the IV
estimate this percentage increase is only 2.5% (See S| Table 1 for all IV results).

Therefore, if the causal links between lake visitation, or more appropriately summer
PUD counts, and lake water quality run both ways then we have found some evidence that the
default estimate of the positive relationship between PUD counts and water quality across the
lakes in the limited dataset is biased downward but is biased upward when we account for all

lakes in the 17-state region.

6.b. Using average summer Secchi depth from the 2005 to 2013 period
We used summer Secchi depth measurements from 1995 to 2013 in our default
approach to increase the number of lakes with observed Secchi and maximum depth

measurements (6551 versus 5412 lakes when summer Secchi measures from 2005 to 2013 are
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used instead). However, if a substantial number of lakes had average summer Secchi depth
measures during the 2005 to 2013 period that were noticeably different than their 1995 to
2013 averages then our default lake visitation estimates may be spurious: observed photo-
posting behavior from 2005 to 2014 could be a function of observed and imputed Secchi
measures not accurately defined in our default datasets. Therefore, we redo our
aforementioned analysis using average summer Secchi based on 2005 to 2013 measures
instead of 1995 to 2013 measures (however, the spatial lag of average summer Secchi depth is
still based on 1995 to 2013 summer-time measures). In this analysis the number of lakes with
observed average summer Secchi measures fall and the number of lakes with imputed average
summer Secchi measures rise.

We find fairly similar relationships between summer PUD counts and the covariate
vector Z when using 2005 to 2013 average Secchi measures instead of 1995 to 2013 measures
(for modeling results using 2005 to 2014 average Secchi measures see Sl Tables 2-5). First, we
compare the explanatory variables selected by the ML approaches given the two different
measures of average summer Secchi depth. In all four comparisons of unique ML — dataset
combinations (DL — limited dataset, DL — augmented dataset, VSURF — limited dataset, VSURF —
augmented dataset) we find that the number of commonly selected variables is always equal to
or greater than the number of uniquely selected variables. For example, seventeen of the same
variables are selected by the double LASSO no matter how Secchi is represented in the
augmented dataset. An additional 11 unique variables are selected when average summer
Secchi is measured with 1995 to 2013 data and 2 unique variables are selected when average

summer Secchi is measured with 2005 to 2013 data. Just as with the default data, the single
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LASSO and VSURF methods never select average summer Secchi as an important predictor (see
Table 10 for a complete comparison of variable selection across datasets and ML methods).

Regardless of which dataset was used — the limited or augmented — the double LASSO
selected more covariates when average summer Secchi was based on 1995 to 2013 measures
versus 2005 to 2013 data. This suggests, not surprisingly, that covariates measured circa 2010
(e.g., land cover, feature counts, etc.) could more precisely predict contemporaneous average
summer Secchi (averages based on 2005-2013 measurements) than averages based on both
historical and contemporaneous measurements (1995 to 2013 measurements).

The estimated models’ ability to predict 2005 to 2014 summer PUD counts using 2005
to 2013 summer Secchi measures does not dominate the predictive ability of models estimated
with 1995 to 2013 summer Secchi measures. In this case predictive ability is measured with 10-
fold cross validations. For example, Zpy Limited With average summer Secchi depth based on 1995
to 2013 observations better predicts 2005 to 2014 summer PUD counts than Zpy timited With
average summer Secchi depths based on 2005 to 2013 observations. However, ZpL+vsurr,Augmented
with average summer Secchi depths based on 1995 to 2013 measures and ZpL+vsurr,Augmented
with average summer Secchi depths based on 2005 to 2013 measures are similarly predictive of
2005 to 2013 summer PUD counts (compare average RMSEs in Tables 8-9 and Sl Tables 6-7).

Finally, there are differences in the estimated coefficients on average summer Secchi
depths based on 2005 to 2013 measures versus 1995 to 2013 measures (Table 11). At lakes in
the limited dataset, an additional meter of average summer Secchi depth based on 2005 to
2013 measures was associated with 14.9% to 25.9% more PUDs from 2005 to 2014 (this is the

range across Ziit,Limited, ZbL Limited, aNd ZpL+VsURF,Limited). This range was 4% to 11% when we used
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Secchi depth measures based on 1995 to 2013 measures. Further, the impact of a one-meter
increase in average Secchi depth as measured or imputed from 2005 to 2014 across all lakes in
the 17-state region ranged from 10.3% to 12.7% (this is the range across Ziit,augmented, ZpL,
Augmented, aNd ZpL+VsURF, Augmented). This range was 7% to 8.5% when we used 1995 to 2013 Secchi
depth measures. (The impact of an additional meter of maximum lake depth on summer PUD
count is the same across both approaches). Therefore, by choosing a default approach that
relied on summer Secchi measurements from a greater time frame, thereby generating a larger
number of observed Secchi measures and relying less on imputed Secchi numbers, we likely
have underestimated the impact of clean water on summer PUD counts, and therefore,

summer visits.

6.c. Limiting the dataset to lakes with water-based recreation amenity features

It may be reasonable to assume that water quality matters more for lake recreators that
use the water directly. For example, people that swim, boat, or fish on lakes may care more
about water quality than lake visitors that only walk or run around lakes or BBQ near lakes
(although Ziv et al. (2016) does not find this to be the case in England). To determine if the PUD
count — water quality relationship is demonstrably different at lakes with recreational
infrastructure that let people directly access lakes we re-conduct our analysis only considering
lakes with at least one beach, boat launch, or marina feature (see Sl Tables 8-13 for full results
of this analysis). While we cannot separate the PUD counts of those that recreated on or in the
lake from those that didn’t at these select lakes, presumably a fair number of PUDs at these

lakes were generated by direct users of the lakes.
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Surprisingly, PUD counts tended to fall as water quality improved at these lakes, all else
equal. At lakes in the limited dataset that had at least one water recreation feature, an
additional meter of average summer Secchi depth based on 1995 to 2013 measures was
associated with 15.5% to 33.6% less 2005 to 2014 summer PUDs (this is the range across
Zyit Limited, ZpL Limited, aNd ZpL+vsurr,Limited). FUrther, the marginal 2005 to 2014 summer PUD impact
of a meter in average Secchi depth as measured or imputed from 1995 to 2014 across all lakes
in the 17-state region ranged from -1.17% to 7.8% (this is the range across Zyit,augmented, ZpL,
Augmented, aNd ZpL+vsuRF, Augmented). HOwever, none of these marginal impacts are statistically
significant at p = 0.05. Therefore, our hypothesis that water quality was especially coveted by
users of lakes that let them get on or in the lakes is not supported by the data. In fact, at lakes
in the limited dataset, summer PUD counts are much higher among the lakes that have worse
water quality, all else equal.

The particularly perverse finding for lakes in the limited dataset could be explained by
previously mentioned reverse causality issues: swimmers, boaters, and fishermen bring
pollution with them and therefore, the more popular lakes for swimming, boating, and fishing,
as proxied by overall PUD count, had less clarity. To test for this possibility we instrument for
average summer Secchi depth in the Zy Limitea COvariate vector when model (11) is estimated
over lakes with water-recreation infrastructure. We again used subwatershed stream density
and percentage of a lake’s 500-meter buffer area in agriculture cover as instruments. We found
that the negative coefficient on average summer Secchi depth from the non-IV Poisson
estimated model with Z Limited became positive (albeit, statistically insignificant at p = 0.05; SI

Table 14) when we instrumented for average Secchi depth. This result makes us question the
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result that worse water clarity was associated with higher summer PUD counts at the water-

recreation equipped lakes in the limited dataset.

7. Discussion and conclusion

In this study we have identified some of the lake features that attract Americans to
lakes. Past research on this question has often been limited by data availability. We do not have
this problem. Instead we have data on a lake visit proxy and more than 100 attributes for
51,107 lakes (4 ha or greater) across 17 states. However, this data richness comes with its own
curse: how do we generate accurate, succinct, and easily digestible conclusions on the
relationships between lake visits and lake attributes?

A further complication was introduced by the lack of water quality measures at a
majority of the 51,107 lakes in our dataset. Based on prior evidence that lake visitation rates
are affected by water quality, not including data on water quality at each lake would introduce
omitted variable bias into any econometric estimate we made of lake visit and lake attribute
relationships. Further, the relationship between lake visitation rates and lake water quality is of
great policy interest. For these reasons, summer Secchi and lake depth measures needed to be
part of our visit model.

Normally the solution to our problem would be to drop the lakes without summer
Secchi or maximum depth measures. However, we found statistical evidence that the subset of
lakes with measured Secchi and lake depths was not a random draw from all 51,107 lakes. This
unrepresentativeness meant that we could not use the estimated visit model across the lakes

with measured Secchi and lake depths to explain visit and attribute relationships across the
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population of lakes. Therefore, to be able to say something about relationships between lake
visitation rates and lake attributes, including water quality, across the entire population of lakes
we imputed Secchi and maximum lake depths at lakes missing this data. In other words, we
worked with two sets of data: a subset of lakes that were measured for Secchi and maximum
lake depth (the limited dataset) and all lakes where Secchi and maximum lake depth was
imputed 20 times when these data were missing (the augmented dataset)

We used ML techniques to determine the parsimonious set of lake attribute covariates
that best predict 2005 to 2014 summer PUD counts at each lake in each dataset where PUD
counts proxies for lake visits. By using these variable selection algorithms, we 1) kept our
covariate vectors to a manageable and interpretable size; 2) identified some strongly predictive
explanatory variables not identified by the lake and park visitation literature; and 3) generated
visit models that minimized summer PUD count prediction error. Once we generated the
covariate vectors we then used a Poisson count model (with robust standard errors to account
for over dispersion in the data) to estimate the impact that a small change in each covariate has
on summer 2005 to 2014 PUD counts. Assuming a linear relationship between actual summer
visits and summer PUD counts between 2005 and 2014, the measured marginal effects give the
lower bound on change in summer visits from 2005 to 2014.

Based on our analysis we conclude the following about lake visit and lake attribute
relationships. First, according to ML algorithms, average summer Secchi depth is not one of the
top predictors of summer PUD counts. No matter the dataset, the single LASSO and VSURF
algorithms did not select average summer Secchi as a covariate in our visit model (the VSURF

algorithm run over the augmented dataset of lakes with water-recreation features being the
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one exception). Average summer Secchi depth only shows up in double LASSO-informed
covariates vectors because we made it the focus of the second step in the double LASSO
process.

Second, despite not being the among the most important predictors, lake PUD counts
increase in water quality. Considering all lakes in our dataset we estimated that a one meter
increase in average summer Secchi as measured between 1995 and 2013 increased 2005 to
2014 summer PUD counts by 7.0% to 8.5%, all else equal.

Third, lake amenities and access appear to have the most powerful impact on summer
PUD counts. For example, considering all lakes in our dataset, lakes with beaches get at least
1.5 times the visits that lakes without beaches get, all else equal. The rate is 1.25 times for lakes
with boat launches and at least 5 times for lakes with hotels. (Although the impact of amenities
in summer PUD counts is weaker when we use 2005 to 2013 measures of Secchi depth instead
of the 1995 to 2013 measures.) Further, the extent of a lake’s buffer that is in developed cover
has a strong effect on summer PUD counts. Considering all lakes in our dataset, for every 10-
percentage point increase in the buffer area that is in developed cover as of 2011, summer
2005 to 2014 PUD counts increase 12 to 23%. Given that we believe that density of developed
cover around a lake is a proxy for the extent of lake access we contend that lake access plays a
very important part in lake visitation.

Fourth, future lake recreation policy focused on lake j must account for the recreation
substitutability and complementarity impacts of lakes near . In of itself, competition decreases
visits to lake j: considering all lakes in our dataset, a lake nearer other lakes have lower summer

PUD counts than more spatially isolated lakes, all else equal. However, once we account for the
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popularity of nearby lakes and their amenity density this substitution effect can be reversed.
Popular lakes with amenities seem to generate more visits than expected for their neighboring
lakes no matter the neighbor’s attribute density.

Considering all lakes in our dataset, we found little evidence that lakes in richer, whiter,
and more educated subwatersheds had higher summer PUD counts, all else equal. Therefore,
assuming most PUDs of a lake are taken by people that live near a lake, there was little to no
socioeconomic divide in 2005 to 2014 summer PUD counts, and by extension, 2005 to 2014
summer lake visits.

While policy makes and recreation managers will find our analysis useful, they should
view are results with some skepticism. First, a large percentage of lakes have zero 2005 to 2014
summer PUDs. We suspect that the histogram of actual visits to these lakes over this time
period is much less concentrated at 0. We do not know how much the clustering of our visits
proxy at O biases our results relative to an estimate of V = f(Z) where visit counts (V) has
replaced summer PUD counts (Y).

Second our population-level estimates rely on extensive data imputation. We provided
evidence that imputation of average summer Secchi and maximum lake depth are not
particularly accurate. It is unclear how much imputation inaccuracy affects our results.

Third, policy makers and concerned citizens are interested in how lake attributes impact
lake visits not lake PUD counts. Prior research that has had access to both site visit and PUD
count data have shown that the relationship between visits (y-axis) and PUD counts (x-axis) can
generally be represented by a linear curve with a positive y-axis intercept and slope. Assuming

this linear relationship generally holds in our case we have shown that estimated explanatory
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variable marginal impacts on summer PUD counts represent the lower bound on summer visit
marginal impacts. However, is our assumption about a generally linear relationship between
summer visits and summer PUD counts valid? And if it is, what is the gap between the lower

bound estimates we provide and the central tendency estimate?

Data and computer code
A zip file with data and computer code (R and Stata) for this paper can be found at the link

https://www.dropbox.com/s/817jakh4x6ie4jc/DataandCodelLakePaper.zip?d|=0.
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Figures

Figure 1. The 51,107 lakes in our dataset. Each dot represents a lake. The data comes from
LAGOS (Soranno et al. 2017). Our dataset includes the entire population of lakes 4 ha or greater
in the LAGOS region. The LAGOS region can be broken into three (sub) regions (defined using 4-
digit hydrologic units (HUC4)). In the ‘Low Agriculture’ region (green background, black dots; N
=6,673) agricultural land cover constitutes less than 10% of land area in each HUCA4. In the
‘High Agriculture’ region (tan background, brown dots; N = 4,584) agricultural land cover
constitutes more than 75% of the land area in each HUCA4. In the ‘Moderate Agriculture’ region
(blue background, red dots; N = 39,850) agricultural land cover constitutes between 10% and
75% of land area in each HUC4. These regions were defined in Collins et al. (2017). The 17
states entirely covered by the LAGOS region include Maine, New Hampshire, Vermont, New
York, Ohio, Michigan, Wisconsin, Minnesota, lowa, lllinois, Missouri, Indiana, Pennsylvania,
New Jersey, Connecticut, Massachusetts, and Rhode Island.
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Figure 2. Histogram of 2005 to 2014 summer photo-user days (PUDs) across the 51,107 lakes
in our database. Mean summer PUD count: 2.12; Median summer PUD count: 0.00; Standard
deviation of summer PUD count: 104.98; Minimum of summer PUD count: 0; Maximum of
summer PUD count: 21,705. R code: Figure2.R
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Figure 3. (A) Lakes with one or more summer PUDs between 2005 and 2014. Entire LAGOS
region: N = 8,728 (17.1% of all lakes in region). Low agriculture region: N = 1,915 (28.7% of all
lakes in region). High agriculture region: N = 504 (11.0% of all lakes in region). Moderate
agriculture region: N = 6,309 (15.8% of all lakes in region). (B) Lakes with five or more summer
PUDs between 2005 and 2014. Entire LAGOS region: N = 2,557 (5.0% of all lakes in region). Low
agriculture region: N = 558 (8.4% of all lakes in region). High agriculture region: N = 145 (3.2% of
all lakes in region). Moderate agriculture region: N = 1,854 (4.7% of all lakes in region). (C) Lakes
with ten or more summer PUDs between 2005 and 2014. Entire LAGOS region: N = 1,302 2.5%
of all lakes in region). Low agriculture region: N = 278 (4.2% of all lakes in region). High
agriculture region: N = 69 (1.5% of all lakes in region). Moderate agriculture region: N = 955
(2.4% of all lakes in region). (D) Lakes with twenty or more summer PUDs between 2005 and
2014. Entire LAGOS region: N = 580 (1.1% of all lakes in region). Low agriculture region: N =119
(1.8% of all lakes in region). High agriculture region: N = 31 (0.7% of all lakes in region).
Moderate agriculture region: N = 430 (1.1% of all lakes in region). R code: Figure3.R.
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Figure 4 (A). Histogram of mean summer Secchi
depths (m) observed between 1995 to 2013 at
the 9,005 lakes in our dataset with at least one
summer Secchi measurement. A lake is
considered eutrophic (on average) if the mean
summer Secchi depth is 1.83 meters or less (the
red dashed line; personal communication with
Patricia A. Soranno from 6/12/2017). According
to this threshold, 3,503 of the 9,005 Secchi-
measured lakes (40.0%) were eutrophic (on
average) between 1995 and 2013. Mean: 2.67
m; Median: 2.35 m; Standard deviation: 1.81 m.
(B) Histograms of mean summer Secchi depths
(m) observed between 1995 to 2013 in the
regions. Between 1995 and 2013 the number of
Secchi-measured lakes that were eutrophic (on
average) were: 2,745 (38.5%) in the moderate
agriculture region; 576 (81.2%) in the high
agriculture region; and 182 (15.7%) in the low
agriculture region. R code: Figure4.R.
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Figure 5. (A). The distribution of mean nearest lake distances across 1,000 random samples of
9,005 lakes and the mean nearest lake distances across the 9,005 lakes with measured Secchi
depth. The mean nearest lake distances across 1,000 random samples of 9,005 lakes (without

replacement) is 5,133.9 (Jmm = 5,133.9) and 45.0 meters (sd(&min) = 45.0), respectively.
The distribution of mean nearest lake distances across 1,000 random samples of 9,005 lakes is
given by the histogram. The mean nearest lake distance across the 9,005 lakes with Secchi
depth summer measurement data is 4,462.7 meters (5min = 4,462.7), as indicated by the
dashed red line. (B). The normalized K function for the 9,005 lakes with measured Secchi
depth (the thin black line) and the range of normalized K functions across the 1,000 random
samples of 9,005 lakes (the blue area). L indicates the (normalized) average lake density found
around 9,005 lakes. The density is measured in a series of circles of radius d meters drawn
around each lake in the sample. The thin black line gives the average density in the series of
circles drawn around the 9,005 lakes with average summer Secchi measurements. The blue
area contains all L functions for the 1,000 random samples of 9,005 lakes. Note that the black
curve lies above the blue area. This would indicate that spatial pattern of Secchi lakes is more
clustered in space than a spatial pattern of lakes randomly drawn from the entire dataset (Siart

et al. 2017). The normalized K(d) function is known as the L(d) function, L(d) = K(d)/mt — d .
R code: Figure5and6.R.
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Figure 6. (A). The distribution of mean nearest lake distances across 1,000 random samples of
9,371 lakes and the mean nearest lake distances across the 9,371 lakes with measured
maximum depth. The mean and standard deviation of the mean nearest lake distances across
1,000 random samples of 9,371 lakes (without replacement) is 5,019.7 (ciml-n = 5,019.7) and
41.1 meters (sd(&min) = 41.1), respectively. The distribution of mean nearest lake distances
across 1,000 random samples of 9,371 lakes is given by the histogram. The mean nearest lake
distance across the 9,371 lakes with maximum depth measurement data is 4,363.7 meters
(Jmm = 4,363.7), as indicated by the dashed red line. (B). The normalized K function for the
9,371 lakes with measured maximum depth (the thin black line) and the range of L functions
across the 1,000 random samples of 9,371 (the blue area). L indicates the (normalized) average
lake density found around 9,371 lakes. The density is measured in a series of circles of radius d
meters drawn around each lake in the sample. The thin black line gives the average density in
the series of circles drawn around the 9,371 lakes with average summer Secchi measurements.
The blue area contains all L functions for the 1,000 random samples of 9,371 lakes. Note that
the black curve lies above the blue area. This would indicate that spatial pattern of lakes
measured for maximum depth is more clustered in space than a spatial pattern of lakes
randomly drawn from the entire dataset (Siart et al. 2017). The normalized K(d) function is

known as the L(d) function, L(d) = \/K(d)/m — d . R code: Figure5and6.R.
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Figure 7. (A) Observed average summer Secchi depth versus mean imputed average summer
Secchi depth and (B) observed maximum lake depth versus mean imputed maximum lake
depth across the 5,570 lakes with observed average summer Secchi and maximum lake
depths. See the text for details on how a lake’s mean imputed average summer Secchi and
maximum lake depths were calculated. Observed versus imputed data summary statistics are
given in the table below. Stata code: Figure7.do

Average summer Secchi depth Maximum lake depth

Mean Std. dev. Mean Std. dev.
Observed 2.869 1.765 10.600 9.072
Imputed 2.871 1.185 10.591 4.498

Notes: Average summer Secchi depth is based on 1995 to 2013 summer measures. Average summer Secchi RMSE:
1.387. Maximum depth RMSE: 8.634.
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Tables

Table 1. Lake count and average summer Secchi depth in LAGOS region.

All lake count

Lake count
Avg. summer Secchi depth (m)
Number (fraction) eutrophic

Entire study Moderate High ag. Low ag.

area ag. region region region

51,107 39,850 4,584 6,673

Lakes with at least one summer Secchi depth measurement
8,733 6,869 710 1,154

2.668 2.570 1.127 4.196

3,418 (0.39) 2,656 (0.39) 576(0.81) 186 (0.16)

Notes: The data only includes lakes that are 4 ha or larger. Average summer Secchi depth and eutrophic counts are
based on 1995 to 2013 summer measures of Secchi depth. The New England region is comprised of the HUC4 units
with IDsof 1, 2, 3,4,6, 7,8,9, 10, and 11. This is a region of the country where agricultural land cover is less than
10% of all land cover. The Corn Belt region is comprised of the HUC4 units with IDs of 34, 50, 53, 56, 57, 61, and 63.
This is a region of the country where agricultural land cover is greater than 75% of all land cover. All other HUC4
units in the dataset comprise the remaining region, which we call the ‘Other’ region. These regions were defined in

Collins et al. (2017).
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Table 2. Predicting which lakes have been measured for summer Secchi and maximum depth.
R code: RFSecchiYesNo.R and RFMaxDepthYesNo.R

Predictions based on Random Predictions based on random
Forests selection
Weighted coin Weighted coin
that flips to 1 that flips to 1
with 0.1852 with 0.1937
probability probability
Dependent Avg. summer Max. depth Avg. summer Max. depth
variable Secchi depth measured =1; | Secchi depth measured = 1;
measured =1; 0 0 otherwise measured =1; 0 0 otherwise
otherwise otherwise
Test data N 36,256 36,256 NA NA
Train data N 9,065 9,065 9,065 9,065
Prediction confusion matrices We flipped a weighed coin 9,065

times and then compared to
observed patterns of missing data.
The stats below are averages over
the 500 iterations.

Actual Actual
Prediction 0 1 0 1
0 | 7298 | 192 7169 | 340
1 |94 1481 169 1387
Accuracy 0.9685 0.9438 0.6985 0.6893
Sensitivity 0.9873 0.9770 0.8148 0.8059
Specificity 0.8852 0.8031 0.1850 0.1936

Notes: After dropping lakes with missing observations for variables in Z we are left with 45,321 of the 51,107 lakes
for this analysis. Sensitivity = fraction of missing summer Secchi or maximum lake depth observations predicted
correctly. Specificity = fraction of observed summer Secchi or maximum lake depth observation predicted
correctly. When using the random selection method for predicting missing summer Secchi depth we used a
weighted coin that flips to 1 with 0.1852 probability given that 18.52% of the 45,321 lakes have measured summer
Secchi depth. When using the random selection method for predicting missing summer Secchi depth we used a
weighted coin that equals 1 on 17.62% of coin flips given that 17.62% of the 51,107 lakes have measured summer
Secchi depth.
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Table 3. Variables in literature review-informed Z (Z.it). The column indicates the type of

variable we assume each covariate is.

g;j variables Q_jvariables p; variables p-jvariables Other variables
Lake area (ha) Spat. lag of avg.  Dist. to nearest  Avg. dist. to % of pop. in lake’s
summer Secchi Core Business closest CBSA of  subwatershed with a
depth Statistical Area the nearest 5 BA or higher, 2011-
(CBSA) (km) lakes (km) 2015

Max. lake depth Spat. lag of Pop. density in Count of lakes > % of pop. in lake’s
(m) count of each lake’s 4 hain lake’s subwatershed that is
amenity feature  subwatershed subwatershed poor, 2011-2015
(people sq km?)
Avg. summer Avg. dist. tothe % of 500 m % lake area % of pop. in lake’s
Secchi depth (m) nearest 5 lakes buffer around within lake’s subwatershed that is
with Secchi lake in dev. subwatershed white, 2011-2015
measurements coverin 2011 (lakes = 4 ha)
(km)

Secchi depth
sampled more
than once*

Avg. size of the
nearest 5 lakes
(ha)

Avg. distance to
nearest 5 lakes
(km)

Median age in lake’s
subwatershed, 2011-
2015

30-yr avg. temp.
in lake’s
subwatershed
(Celsius)

Median HH inc. in
lake’s subwatershed,
2011-2015

% of 500 m buffer

around lake in
forest in 2011

Region dummies

% of 500 m buffer

around lake in

wetlands in 2011

Latitude and longitude
of lake

Count of each
amenity feature

Spat. lag of summer
PUD count

Notes: * indicates only available when using limited dataset.
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Table 4. Variables in single (SL) and double LASSO (DL)-informed 2Z’s. R code: LASSO.R with the
Limited dataset and LASSOImputed1.R — LASSOImputed20.R with the Augmented datasaet. See
ImputeSecchiMaxLakeDepth.do for Stata code to create the Augmented dataset.

Zsy Limited

ZDL,Limited

ZSL,Augmented

ZDL,Augmented
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Lake area

Lake area

Lake area

Lake area

Beach feature count

Max. lake depth

Max. lake depth

Max. lake depth

Avg. summer Secchi
depth

Beach feature count

Avg. summer Secchi
depth

30-yr precip. avg. in
lake’s subwatershed

Boat launch feature
count

30-yr precip. avg. in
lake’s subwatershed

% of 500 m buffer
around lake in forest
in 2011

Hotel feature count

% of 500 m buffer
around lake in forest in
2011

% of 500 m buffer
around lake in
wetlands in 2011

Marina feature count

% of 500 m buffer
around lake in wetlands
in 2011

Total stream density
in lake’s
subwatershed

Toilets feature count

% of 500 m buffer
around lake in
agriculture in 2011

Avg. area of forested
wetland in lake’s
subwatershed

Beach feature count

Spat. lag of avg.
summer Secchi depth

Pop. density in lake’s
subwatershed

% of 500 m buffer
around lake in
developed cover in
2011

% of pop. in lake’s
subwatershed with a
BA degree or higher,
2011-2015

Total stream density in
lake’s subwatershed

Avg. area of forested
wetland in lake’s

subwatershed

Beach feature count

Avg. dist. to the
nearest 5 lakes with
Secchi
measurements

Lake has been
sampled for NO;NOs

Boat launch feature
count

Avg. dist. to nearest
5 lakes

Lake has been
sampled for total

Hotel feature count

phosphorous
Spat. lag of boat Spat. lag of summer Marina feature count
launch feature count |PUD count

Spat. lag of toilet
feature count

Picnic feature count

Lake has been

Spat. lag of average

sampled for summer Secchi depth
Chlorophyll

High ag. region Spat. lag of beach
dummy feature count




Zsy Limited

ZDL,Limited

ZSL,Augmented

ZDL,Augmented

Spat. lag of boat launch
feature count

Spat. lag of hotel
feature count

Spat. lag of toilet
feature count

Avg. dist. to the nearest
5 lakes with Secchi
measurements

Avg. dist. to nearest 5
lakes

Pop. density in lake’s
subwatershed

Avg. distance to closest
CBSA across the nearest
5 lakes

% lake area within lake’s
subwatershed (lakes = 4
ha)

Median age in lake’s
subwatershed, 2011-
2015

% of pop. in lake’s
subwatershed that is
white, 2011-2015

Lake has been sampled
for N02N03

High ag. region dummy

}\min
}\min,DL,FS
}\min,DL,SS
CVM
CVMopyrs
CVMpyss

4.53

142.22

4.97
0.07

142.22
3.27

0.93 (0.00)

143.36 (0.65)

3.11 (0.00)
0.06 (0.14)

143.36 (0.65)
2.63(0.04)

Notes: CVM = Cross-validation mean. Subscript SL indicates single LASSO. Subscript DL,FS indicates double LASSO,
first stage. Subscript DL,SS indicates double LASSO, second stage.
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Table 5. Variables in VSURF-informed Zs. R code: VSURF.R with the Limited dataset and
VSURFImputedl1.R — VSURFImputed20.R with the Augmented datasaet.

ZySURF, Limited ZysuRF,Augmented
Lake area Beach feature count
Spat. lag of summer PUD count Lake area

Marina feature count

Spat. lag of summer PUD count

% of 500 m buffer in dev. cover in 2011
Toilet feature count

% of 500 m buffer in dev. cover in 2011
30-yr precip. avg in lake’s subwatershed®

Notes: Selected variables in Zysurr,Limited COlumMn are listed in order of predictive importance. Selected variables in
Zysurr,augmented COlUMN are listed in mean order of predictive importance over the 20 sets of selected variables.
*Only 7 of the 20 VSURF iterations included this variable. However, it was needed for the Poisson count model to

converge to a solution over Zysyre,augmented-
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Table 6. Estimated Poisson count model with Zyit Limited, ZpL,Limited, ZVSURF,Limited, @Nd

ZpL+vsurr,Limited- RObUSt standard errors are in parentheses. Stata code: ObservedSecchi.do.

ZiitLimited  ZDL Limited ZysurrF,Limited  ZDL+VSURF, Limited
Lake area 4.45e-05*** 9.35e-05*** 9.83e-05***  7.16e-05***
(1.22e-05)  (1.11e-05) (1.42e-05) (1.00e-05)
Avg. summer Secchi depth 0.0413 0.106** 0.0760*
(0.0331) (0.0446) (0.0454)
Max. depth 0.0192%** 0.01471*** 0.0162***
(0.00436) (0.00301) (0.00329)
Secchi depth sampled more than once 0.480***
(0.158)
30-yr avg. temp. in lake’s subwatershed -0.0918
(0.129)
% of 500 m buffer in forest in 2011 0.00808**  -0.0203*** 0.0112%***
(0.00322)  (0.00383) (0.00297)
% of 500 m buffer in wetlands in 2011 0.00460 -0.0374*** 0.00102
(0.00454) (0.00646) (0.00565)
Boat feature count 0.350%**
(0.0575)
Beach feature count 0.0374 0.128*** 0.103***
(0.0289) (0.0194) (0.0217)
Hotel feature count 0.309
(0.856)
Shelter feature count 0.0584
(0.642)
Toilets feature count 0.0597** 0.101%** 0.0533**
(0.0248) (0.0222) (0.0253)
Picnic feature count -1.182**
(0.468)
BBQ feature count 0.822**
(0.350)
Marina feature count 0.125 0.146*** 0.0358
(0.143) (0.0156) (0.0225)
Spat. lag of avg. summer Secchi depth 0.813** -0.294 -0.131
(0.392) (0.259) (0.236)
Spat. lag of boat feature count -2.355 56.34*** 30.36***
(6.090) (5.462) (5.311)
Spat. lag of beach feature count 2.821
(7.846)
Spat. lag of hotel feature count 150.9
(114.2)
Spat. lag of shelter feature count 6.246
(65.43)
Spat. lag of toilets feature count -1.591 18.04*** 12.58***
(4.272) (3.173) (3.778)
Spat. lag of picnic feature count 55.92%*
(27.56)
Spat. lag of BBQ feature count -134.8
(88.93)
Spat. lag of marina feature count 9.331
(30.98)
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ZiitLimited  ZDL Limited ZysurF,Limited ZDL+VSURF, Limited
Avg. dist. to nearest 5 lakes w/ Secchi measure 0.0219***  (0.0349*** 0.0371***
(0.00851)  (0.00931) (0.00931)
Avg. size of nearest 5 lakes 0.000338
(0.000314)
Dist. to nearest CBSA 9.55e-06
(2.37e-05)
Pop. den. in subwatershed 0.000342***
(9.19e-05)
% of 500 m buffer in dev. cover in 2011 0.0254*** 0.0292*** 0.0361***
(0.00321) (0.00323) (0.00355)
Avg. dist. to nearest 5 lakes 0.0210 -0.0215 0.00864
(0.0265) (0.0268) (0.0286)
Avg. dist. to closest CBSA of the nearest 5 lakes -7.78e-06
(2.41e-05)
Lake count in subwatershed -0.0145
(0.00949)
Lake area in subwatershed 0.0270***
(0.00745)
% of pop. in lake’s subwatershed with a BA 0.0433***
(0.00676)
% of pop. in lake’s subwatershed that is poor 0.00934
(0.0187)
% of pop. in lake’s subwatershed that is white, 0.00626
(0.00774)
Median age in lake’s subwatershed, 2011-2015 -0.0156
(0.0157)
Median HH inc. in lake’s subwatershed, 2011-2015 1.61e-06
(9.57e-06)
Lag of summer PUD count 0.274** 0.410*** 0.283***
(0.119) (0.0604) (0.0593)
Latitude -0.151
(0.143)
Longitude -0.0313
(0.0282)
Low ag. region -0.727%**
(0.339)
High ag. Region -0.743*** 0.106 0.344
(0.249) (0.310) (0.265)
30-yr avg. precip. in subwatershed (mm) 0.00327*** 0.00166***
(0.000548) (0.000553)
Chlorophyll a measured at lake (ug/l) 0.549*** 0.567***
(0.181) (0.173)
Total stream density in subwatershed (m/m sq.) -0.193*** -0.148***
(0.0280) (0.0280)
Avg. forested wetland area in subwatershed (ha) -0.00304 -0.00201
(0.00453) (0.00450)
Constant -0.583 -2.066*** -0.116 -3.501***
(7.023) (0.617) (0.151) (0.632)
Observations 3,276 3,276 3,276 3,276
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Table 7. Estimated Poisson count model with Zyit augmented, ZbL, Augmented, ZVSURF, Augmented, and
ZpL+vsURF, Augmented- RObust standard errors are in parentheses Stata code: ImputedSecchi.do.

Ziit Aug. ZpLAug. Zysurr,Aug. ZpL+VSURF,Aug.
Lake area 0.00005*** 0.00006*** 0.00012***  0.00005***
(0.00001) (0.00001) (0.00002) (0.00001)
Avg. summer Secchi depth 0.08127** 0.07** 0.07**
(0.03373) (0.034) (0.034)
Max. depth 0.0301*** 0.029*** 0.029***
(0.00407) (0.004) (0.004)
30-yr avg. temp. in lake’s subwatershed -0.064
(0.064)
% of 500 m buffer in forest in 2011 0.006** -0.016*** -0.0067*
(0.002) (0.002) (0.0034)
% of 500 m buffer in wetlands in 2011 0.011%** -0.012*** -0.0019
(0.003) (0.004) (0.004)
Boat feature count 0.306*** 0.200*** 0.216***
(0.049) (0.052) (0.054)
Beach feature count 0.517*** 0.429%** 0.341%** 0.431%**
(0.056) (0.065) (0.022) (0.069)
Hotel feature count 2.148*** 2.007*** 1.868***
(0.506) (0.491) (0.463)
Shelter feature count 0.261*
(0.158)
Toilets feature count 0.085***
(0.024)
Picnic feature count 0.198*** -0.37** -0.35%*
(0.06625) (0.162) (0.169)
BBQ feature count -0.667***
(0.097)
Marina feature count 0.398*** 0.19 (0.169) 0.159
(0.121) (0.176)
Spat. lag of avg. summer Secchi depth 0.274 0.255** 0.26**
(0.23) (0.126) (0.125)
Spat. lag of boat feature count -1.73468 10.301** 4.452
(4.719) (4.927) (4.872)
Spat. lag of beach feature count 4.94 5.586** -7.333
(4.55433) (2.202) (5.979)
Spat. lag of hotel feature count -328.08 -146.747 -341.665
(202.38) (132.196) (217.513)
Spat. lag of shelter feature count -4.339
(9.73)
Spat. lag of toilets feature count 1.743 4.72%* 5.933***
(2.33) (2.273) (2.295)
Spat. lag of picnic feature count 27.25%*
(12.14)
Spat. lag of BBQ feature count 30.95
(28.01)
Spat. lag of marina feature count -110.04***
(34.53)
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zLit,Aug. ZDL,Aug. zVSURF,Aug. zDL+VSURF,Aug.
Avg. dist. to nearest 5 lakes w/ Secchi measure 0.011* 0.005 (0.006) 0.008
(0.00592) (0.006)
Avg. size of nearest 5 lakes -0.00006
(0.00008)
Dist. to nearest CBSA 0.00003
(0.00003)
Pop. den. in subwatershed 0.00011 0.00041*** 0.00025**
(0.00013) (0.00009) (0.00012)
% of 500 m buffer in dev. cover in 2011 0.023*** 0.022*** 0.012***
(0.003) (0.002) (0.003)
Avg. dist. to nearest 5 lakes 0.093*** 0.122%%** 0.114***
(0.021) (0.024) (0.025)
Avg. dist. to closest CBSA of the nearest 5 lakes -0.00003 -0.000001 -0.0000004
(0.00003) (0.000002) (0.0000019)
Lake count in subwatershed -0.011%***
(0.004)
Lake area in subwatershed 0.028*** 0.023*** 0.023***
(0.005) (0.006) (0.006)
% of pop. in lake’s subwatershed with a BA 0.038***
(0.004)
% of pop. in lake’s subwatershed that is poor -0.015*
(0.009)
% of pop. in lake’s subwatershed that is white -0.00175 -0.005 -0.004
(0.00479) (0.005) (0.005)
Median age in lake’s subwatershed -0.0076 0.006 (0.008) 0.005
(0.0081) (0.008)
Median HH inc. in lake’s subwatershed -0.00001*** 0.000013*** 0.000011***
(0.000004) (0.000002) (0.000002)
Latitude -0.126*
(0.069)
Longitude 0.0297***
(0.0116)
Low ag. Region -0.632%**
(0.162)
High ag. region 0.131 0.11 0.239
(0.222) (0.211) (0.216)
Spat. lag of summer PUD count 0.454*** 0.275%** 0.322%**
(0.131) (0.024) (0.097)
30-yr min temp. in lake’s subwatershed (Celsius) 0.031
(0.019)
30-yr avg. precip. in subwatershed (mm) 0.00128*** 0.0011%**
(0.00035) (0.0003)
% of 500 m buffer in ag. in 2011 -0.0295*** -0.02%**
(0.00307) (0.004)
Total stream density in subwatershed (m/m sq.) -0.00495 -0.0097
(0.01882) (0.01871)
Avg. forested wetland area in subwatershed (ha) -0.015** -0.016**
(0.007) (0.008)
NO,-NOs; measured at lake (ug/l as N) 1.195*** 1.16***
(0.082) (0.082)
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zLit,Aug. ZDL,Aug. zVSU RF,Aug. zDL+VSU RF,Aug.
Constant 6.093* -3.208%*** -1.008*** -3.693***

(3.41) (0.527) (0.064) (0.627)
Observations 19,790 19,790 19,790 19,790

Table 8. Ten-cross fold validation of Poisson count model with Zyjt Limited, ZbL Limited, ZVSURF,Limited,
and Zpy+vsurr,Limited. Each cell gives the RMSE of for the given fold. Stata code:

ObservedSecchi.do.

Fold Zyit Limited Zpy Limited ZySURF Limited ZpL+VSURF Limited
1 34 21 10 355
2 48,220 46 84 63
3 26 12 593,000,000 15
4 14 47 171 40
5 34 14 11 1,224
6 407,000,000,000 18 23 12
7 9 38 15 39
8 19 15 24 21
9 34 313 38 16
10 473 1,626 32 16,900,000
Mean RMSE 40.7x10° 215 59,300,041 1,690,178

SD of RMSE 122.1x10° 478 177,899,986 5,069,941
Mean RMSE less largest RMSE 5,429.4 58.3 45.3 198.3
Mean RMSE less two largest 80.6 26.4 29.5 70.0

RMSEs

Table 9. Ten-cross fold validation of Poisson count model with Zyi; augmented, ZbL,Augmented,
Zysurr,Augmented, aNd ZpL+vsurF,Augmented. FOr each model we conduct 20 cross fold validation
analyses, one for each model estimated over a unique set of imputed average summer Secchi
and maximum lake depths. The exception is the model estimated with Zysurr,augmented as this
covariate vector does not contain any imputed data. Stata code: ImputedSecchi.do.

Fold Literature D. LASSO VSURF DLASSO+VSURF
Mean RMSE 66.0 2.21x10%1 27,380 7.71x10%

SD of RMSE 263.4 1.59x10% 82,120 3.56x10"!
Mean RMSE less the ten largest
RMSE 20.7 40.8 6.7 18.6
Mean RMSE less the twenty largest
RMSEs 10.6 7.7 6.3 7.7
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Table 10. Comparison of variables selected by the Machine Learning algorithms when average
summer Secchi is measured with 1995 to 2013 observations versus 2005 to 2013
observations.

Double LASSO VSURF
# of unique variables with... # of unique variables with...
# of common 1995-2013 2005-2013 # of common 1995-2013 2005-2013
variables measures measures variables measures measures
Limited 8 8 4 5 0 5
dataset
Augmented 17 11 2 3 2 3
dataset
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Table 11. Comparison of estimated coefficients using preferred models and 1995-2013 versus
2005-2013 measures of summer Secchi depth. Robust standard errors are in parentheses.
Stata code: ObservedSecchi.do, ImputedSecchi.do, ObservedSecchi0513.do,

ImputedSecchi0513.do.

Zpy Limited ZpL+VSURF,Augmented
w/ 95-13 w/ 05-13 w/ 95-13 w/ 05-13
measures measures measures measures
Lake area 9.4x107>***  7.6x107°*** | 50x10°*** 5 0x10>***
(-1.1x10%)  (-1.2x10°) | (1 x10°) (1 x10)
Avg. summer Secchi depth 0.106** 0.230%*** 0.070** 0.109%***
(-0.045) (-0.047) (0.034) (0.038)
Max. depth 0.014*** 0.008*** 0.029*** 0.021***
(-0.003) (-0.003) (0.004) (0.004)
30-yr avg. precip. in 0.001*** 0.0014***
subwatershed (mm) (0.0003) (0.0004)
% of 500 m buffer in forest in -0.020*** -0.017%*** -0.007* 0.004
2011 (-0.004) (-0.004) (0.003) (0.006)
% of 500 m buffer in wetlands -0.0019 0.002
in 2011 (0.004) (0.005)
% of 500 m buffer in ag. in 2011 -0.020*** -0.017***
(0.004) (0.005)
Total stream den. in -0.010 -0.089***
subwatershed (m/m sq) (0.019) (0.03)
Beach feature count 0.128*** 0.065***
(-0.019) (-0.025)
Spat. lag of avg. summer Secchi -0.294 0.190 0.260** -0.064 (0.163)
depth (-0.259) (-0.206) (0.125)
Spat. lag of boat launch feature 4.452 13.625%**
count (4.872) (4.766)
Spat. lag of beach feature count -7.333 -11.826*
(5.979) (6.099)
Spat. lag of toilets feature 5.933**x* 3.301
count (2.295) (2.087)
Avg. dist. to nearest 5 lakes w/  0.035*** 0.039*** 0.008 -0.003
Secchi measure (-0.009) (-0.009) (0.006) (0.006)
Pop. den. in subwatershed 0.0003** -0.00003
(0.0001) (0.00015)
% of 500 m buffer in dev. cover 0.012%** 0.017%**
in 2011 (0.003) (0.005)
Avg. dist. to nearest 5 lakes -0.022 -0.015 0.114%*** 0.182%**
(-0.027) (-0.028) (0.025) (0.017)
Avg. dist. to closest CBSA from -4x1077 -4x1076%*
the nearest 5 lakes (1.9 x10) (2x10°°)
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High Ag. Region 0.239 0.997*
(0.216) (0.513)

Spat. lag of summer PUD count 0.322%** 0.379%**
(0.097) (0.085)
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Appendix

Sl Table 1. Estimated IV Poisson count model with Zy;t Limited and Zyit,augmented. RObust standard
errors are in parentheses. Stata Code: ObservedSecchilV.do and ImputedSecchilV.do.

Zyit Limited Zyit, Augmented

Avg. summer Secchi depth 2.467***  0.025
(0.905)

Lake area 0.00083** 0.007
(0.0004)

Max. depth -0.091** 0.04
(0.036)

Secchi depth sampled more than once 0.234
(0.367)

30-yr avg. temp. in lake’s subwatershed -0.519***  -0.259
(0.202)

% of 500 m buffer in forest in 2011 0.014** 0.003
(0.006)

% of 500 m buffer in wetlands in 2011 0.031***  0.00044
(0.009)

Boat feature count 0.636***  0.738
(0.13)

Beach feature count 0.072 1.002
(0.141)

Hotel feature count 0.816 2.122
(0.805)

Shelter feature count 0.680 0.95
(0.454)

Toilets feature count 0.036 0.242
(0.134)

Picnic feature count -0.594 0.058
(0.414)

BBQ feature count -0.074 -1.49
(0.362)

Marina feature count -0.515* 0.223
(0.274)

Spat. lag of avg. summer Secchi depth -4.664***  0.086
(1.666)

Spat. lag of boat feature count -10.356 4.843
(11.913)

Spat. lag of beach feature count 39.834** 13.645
(19.664)
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ZLit,Limited ZLit,Augmented

Spat. lag of hotel feature count -210.912 -96.831
(296.566)

Spat. lag of shelter feature count 34.552 -18.053
(120.298)

Spat. lag of toilets feature count 18.001*** 1.324
(5.104)

Spat. lag of picnic feature count -22.047 20.24
(76.069)

Spat. lag of BBQ feature count 166.29* 29.066
(88.992)

Spat. lag of marina feature count -115.274*  -136.273
(69.829)

Avg. dist. to nearest 5 lakes w/ Secchi measure 0.022 -0.006
(0.018)

Avg. size of nearest 5 lakes -0.00081 0.000003
(0.00072)

Dist. to nearest CBSA -0.0001**  0.00001
(0.00005)

Pop. den. in subwatershed 0.001** 0.00041
(0.001)

% of 500 m buffer in dev. cover in 2011 0.034***  0.029
(0.006)

Avg. dist. to nearest 5 lakes 0.191***  0.114
(0.073)

Avg. dist. to closest CBSA across the nearest 5 lakes 0.0001**  -0.00001
(0.00005)

Lake count in subwatershed -0.036** 0.005
(0.017)

Lake area in subwatershed 0.081** 0.006
(0.04)

% of pop. in lake’s subwatershed with a BA, 2011-15 0.019 0.043
(0.013)

% of pop. in lake’s subwatershed that is poor, 2011-15 0.017 0.024
(0.022)

% of pop. in lake’s subwatershed that is white, 2011-15 0.025* -0.004
(0.014)

Median age in lake’s subwatershed, 2011-2015 -0.026 0.008
(0.018)

Median HH inc. in lake’s subwatershed, 2011-2015 0.000001  -0.000002
(0.00001)

Spatial lag of summer PUD count 0.058 0.788
(0.371)
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ZLit,Limited ZLit,Augmented

Latitude -0.674***  -0.391
(0.225)

Longitude 0.083 0.013
(0.051)

Low ag. Region 0.074 -0.421
(0.686)

High ag. Region 0.046 -0.738
(0.35)

Constant 44.641*** 15.054
(15.362)

Observations 3,276 19,790

Notes: Average summer Secchi instrumented with subwatershed-level stream density and percentage of 500-m
buffer in agriculture land cover. Zyi,augmented results are mean coefficient values over 18 model estimates. Test of
overidentifying restriction in IV with Zyi Limitea: Hansen's J chi2(1) = 0.00003 (p = 0.995). Mean of tests of
overidentifying restriction in IV with Zyit,augmentea: mean Hansen's J chi2(1) = 38.02 (p = 0.000).
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Sl Table 2. Variables in single (SL) and double LASSO (DL)-informed Z’s with average summer
Secchi based on summer 2005 to 2013 measures. R code: LASSO0513.Rwith Limited dataset
and LASSOImputed10513.R — LASSOImputed200513.R with the Augmented dataset.

ZSL,Limited ZDL,Limited ZSL,Augmented ZDL, Augmented
Lake area Lake area <<None>> Lake area
Beach feature count | Average summer Secchi depth Average summer Secchi depth
Boat launch feature | Maximum lake depth Maximum lake depth
count
BBQ feature count % of 500 m buffer in forest in 30-yr avg. precip. in lake’s
2011 subwatershed
Pop. den. in lake’s Beach feature count % of 500 m buffer in wetlands
subwatershed in 2011
Spat. lag of summer | Boat launch feature count % of 500 m buffer in ag. in
PUD count 2011
BBQ feature count % of 500 m buffer in forest in
2011
Spat. lag of average summer Total stream density in lake’s
Secchi depth subwatershed
Avg. dist. to nearest 5 lakes Avg. scrub-shrub wetland area
in lake’s subwatershed
Avg. dist. to the nearest 5 lakes BBQ feature count
w/ Secchi measurements
Pop. den. in lake’s subwatershed Spat. lag of average summer
Secchi depth
Spat. lag of summer PUD count Spat. lag of beach feature
count
Spat. lag of boat feature count
Spat. lag of toilet feature count
Avg. dist. to the nearest 5 lakes
w/ Secchi measurements
Pop. den. in lake’s
subwatershed
Avg. dist. to nearest 5 lakes
Avg. dist. to closest CBSA
across the nearest 5 lakes
High ag. region
Amin 4.30 4.19 (0.00)
Amin,DLES 4.30 2.89 (0.00)
Amin,oL,ss 0.21 2.67 (0.05)
CVM 374.14 145.64 (0.00)
CVMpyrs 374.14 145.64 (0.00)
CVMpss 3.39 2.67 (0.05)

Notes: CVM = Cross-validation mean. Subscript SL indicates single LASSO. Subscript DL,FS indicates double LASSO,
first stage. Subscript DL,SS indicates double LASSO, second stage.
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Sl Table 3. Variables in VSURF-informed Z’s with average summer Secchi based on summer
2005 to 2013 measures. R code: VSURF0513.R with the Limited dataset and
VSURFImputed10513.R - VSURFImputed200513.R with the Augmented dataset.

ZysuRF,Limited

ZysuRF,Augmented

Spat. lag of summer PUD count

Lake area

Lake area

% of 500 m buffer in dev. cover in 2011

Spat. lag of marina feature count

Spat. lag of shelter feature count

% of pop. in lake’s subwatershed with a BA, 2011-15

Spat. lag of summer PUD count

Pop. den. in lake’s subwatershed

Pop. den. in lake’s subwatershed

Longitude

% of population in lake’s subwatershed with a BA, 2011-15

% of 500 m buffer in dev. cover in 2011

Marina feature count

Toilet feature count

Maximum depth

Notes: Selected variables in Zysugr,Limited cOlumMn are listed in order of predictive importance. Selected variables in
Zysurr,Augmented column are listed in mean order of predictive importance over the 20 sets of selected variables.
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Sl Table 4. Estimated Poisson count model with Z,i,1imited, ZpL,Limited, ZVSURF, Limited, and
ZpL+vsurr,Limited aNd using average summer Secchi based on measurements from 2005 to 2013.
Robust standard errors are in parentheses. Stata code: ObservedSecchi0513.do.

Zyjt Limited Zpy,Limited ZysuRF, Limited ZpL+VSURF, Limited
Lake area 2.81e-05** 7.60e-05*** 8.48e-05***  7.63e-05***
(1.27e-05) (1.22e-05) (1.05e-05) (1.13e-05)
Avg. summer Secchi depth 0.139** 0.230%*** 0.199%***
(0.0569) (0.0474) (0.047)
Max. depth 0.0143%** 0.008*** 0.011%** 0.006**
(0.003) (0.003) (0.004) (0.003)
Secchi depth sampled more than once 0.209
(0.170)
30-yr avg. temp. in lake’s subwatershed -0.041
(0.114)
% of 500 m buffer around lake in forest in 2011 0.003 -0.011*** 6.70e-05
(0.004) (0.004) (0.00333)
% of 500 m buffer around lake in wetlands in 2011 0.0016
(0.0051)
Boat feature count 0.182%** 0.343%** 0.239%**
(0.060) (0.042) (0.0517)
Beach feature count 0.068*** 0.065*** 0.065***
(0.024) (0.025) (0.024)
Hotel feature count 1.524%**
(0.318)
Shelter feature count -0.0642
(0.316)
Toilets feature count 0.156*** 0.161%*** 0.160***
(0.0358) (0.0349) (0.0312)
Picnic feature count -0.107
(0.238)
BBQ feature count 2.105%** 1.628*** 2.014%**
(0.256) (0.168) (0.153)
Marina feature count 0.372%* 1.006*** 0.500***
(0.219) (0.100) (0.133)
Spat. lag of avg. summer Secchi depth 0.229 0.190 0.807***
(0.297) (0.206) (0.205)
Spat. lag of boat feature count -0.405
(6.175)
Spat. lag of beach feature count -3.708
(8.798)
Spat. lag of hotel feature count -141.0
(133.9)
Spat. lag of shelter feature count 3.655
(30.32)
Spat. lag of toilets feature count -0.954
(3.226)
Spat. lag of picnic feature count 44 .99**
(21.00)
Spat. lag of BBQ feature count -196.5*
(108.8)
Spat. lag of marina feature count -47.11 56.41 9.352
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Zyit Limited Zpy Limited ZysURF Limited ZpL+VSURF Limited
(37.95) (45.71) (43.40)
Avg. dist. to nearest 5 lakes w/ Secchi measure 0.044*** 0.039%** 0.0418***
(0.008) (0.009) (0.00797)
Avg. size of nearest 5 lakes 0.0006
(0.0004)
Dist. to nearest CBSA 6.3e-05%**
(2.1e-05)
Pop. den. in subwatershed 0.0002* 0.0007*** 0.0002 0.0002**
(0.0001) (7.77e-05) (0.0001) (9.12e-05)
% of 500 m buffer around lake in dev. cover in 2011 0.0245*** 0.0171*** 0.0246***
(0.00384) (0.00309) (0.00326)
Avg. dist. to nearest 5 lakes -0.0236 -0.0154 0.00925
(0.0237) (0.0281) (0.0254)
Avg. dist. to closest CBSA across the nearest 5 lakes -6.1e-5***
(2.0e-05)
Lake count in subwatershed -0.007
(0.006)
Lake area in subwatershed 0.038***
(0.007)
% of pop. in lake’s subwatershed with a BA, 2011-15 0.045*** 0.0266*** 0.0295***
(0.006) (0.00404) (0.00401)
% of pop. in lake’s subwatershed that is poor, 2011-15  -0.006
(0.011)
% of pop. in lake’s subwatershed that is white, 2011-15 0.0007
(0.0057)
Median age in lake’s subwatershed, 2011-15 -0.021**
(0.011)
Median HH inc. in lake’s subwatershed, 2011-15 -2.2e-5%**
(5.8e-6)
Lag of summer PUD count 0.499%*** 0.282%** 0.171 0.266**
(0.148) (0.0333) (0.126) (0.117)
Latitude -0.0892
(0.104)
Longitude 0.0159 0.0144 -0.0390***
(0.0201) (0.00936) (0.0102)
Low ag. region -0.536**
(0.268)
High ag. region -0.109
(0.230)
Constant 4.545 -0.602 0.576 -7.472%**
(5.693) (0.534) (0.899) (1.410)
Observations 2,706 2,706 2,706 2,706
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Sl Table 5. Estimated Poisson count model with Ziit augmented, ZpL,Augmented, ZVSURF,Augmented, and
ZpL+vsurF,Augmented aNd using average summer Secchi based on measurements from 2005 to
2013. Robust standard errors are in parentheses. Robust standard errors are in parentheses

Stata code: ImputedSecchi0513.do.

zLit,Aug. ZDL,Aug. ZVSURF,Aug. ZDL+VSURF,Aug.
Lake area -0.00001 0.00006***  0.00011*** 0.00005***
(0.00003)  (0.00001)  (0.00001)  (0.00001)
Avg. summer Secchi depth 0.12%** 0.098** 0.109%***
(0.039) (0.039) (0.038)
Max. depth 0.021*** 0.022%*** 0.021***
(0.008) (0.004) (0.004)
30-yr avg. temp. in lake’s subwatershed 0.00485
(0.08088)
% of 500 m buffer in forest in 2011 0.00958*** -0.014*** 0.004
(0.00287) (0.002) (0.006)
% of 500 m buffer in wetlands in 2011 0.00852**  -0.019*** 0.002
(0.00356) (0.003) (0.005)
Boat feature count 0.29***
(0.071)
Beach feature count 0.024
(0.127)
Hotel feature count 0.701
(2.053)
Shelter feature count 0.137
(0.240)
Toilets feature count 0.195%**
(0.031)
Picnic feature count -0.405
(1.051)
BBQ feature count -1.287 0.804 0.87
(1.177) (0.527) (0.544)
Marina feature count 0.401**
(0.193)
Spat. lag of avg. summer Secchi depth 0.050 -0.141 -0.064
(0.238) (0.155) (0.163)
Spat. lag of boat feature count 3.267 25.194*** 13.625***
(4.360) (5.345) (4.766)
Spat. lag of beach feature count -0.028 4.62** -11.826*
(6.412) (2.065) (6.099)
Spat. lag of hotel feature count 123.237*
(70.167)
Spat. lag of shelter feature count 10.50 6.661 -10.997
(9.464) (7.716) (16.768)
Spat. lag of toilets feature count -4.155* 9. 5¥** 3.301
(2.242) (2.765) (2.087)
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zLit,Aug. ZDL,Aug. ZVSURF,Aug. ZDL+VSURF,Aug.
Spat. lag of picnic feature count 40.802%**
(16.338)
Spat. lag of BBQ feature count -5.507
(34.825)
Spat. lag of marina feature count -108.6***
(31.23)
Avg. dist. to nearest 5 lakes w/ Secchi measure 0.00205 -0.02%** -0.003
(0.00614) (0.007) (0.006)
Avg. size of nearest 5 lakes -0.00077
(0.00074)
Dist. to nearest CBSA 0.00003
(0.00003)
Pop. den. in subwatershed 0.00004 0.00029*** 0.00012 -0.00003
(0.00019) (0.00011) (0.00015) (0.00015)
% of 500 m buffer in dev. cover in 2011 0.024*** 0.015%** 0.017%**
(0.003) (0.002) (0.005)
Avg. dist. to nearest 5 lakes 0.139%** 0.192%** 0.182%**
(0.018) (0.018) (0.017)
Avg. dist. to closest CBSA of the nearest 5 lakes  -3x107° -1x1075*** -4x1076%*
(3x10%) (1x10°®) (2x10°%)
Lake count in subwatershed -0.015%**
(0.006)
Lake area in subwatershed 0.04***
(0.006)
% of pop. in lake’s subwatershed with a BA, 0.04%** 0.037*** 0.033***
2011-15 (0.005) (0.006) (0.006)
% of pop. in lake’s subwatershed that is poor, -0.029%***
2011-15 (0.01)
% of pop. in lake’s subwatershed that is white, -0.0031
2011-15 (0.00504)
Median age in lake’s subwatershed, 2011-2015 -0.00277
(0.00911)
Median HH inc. in lake’s subwatershed, 2011- -2 x1075%**
2015 (0)
Latitude -0.044
(0.09)
Longitude 0.02%*
(0.011)
Low ag. Region -0.424***
(0.159)
High ag. Region -0.42 1.062* 0.997*
(0.339) (0.609) (0.513)
Spat. lag of summer PUD count 0.446%** 0.286*** 0.379%**
(0.126) (0.021) (0.085)
30-yr avg. precip. in subwatershed (mm) 0.002%** 0.00138***
(0.0005) (0.00038)
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zLit,Aug. ZDL,Aug. ZVSURF,Aug. ZDL+VSURF,Aug.
% of 500 m buffer in ag. in 2011 -0.038*** -0.017***
(0.003) (0.005)
Total stream density in subwatershed (m/m sq.) -0.078** -0.089***
(0.032) (0.03)
Avg. scrub-shrub wetland area in lake’s -0.001 0.004
subwatershed (0.009) (0.005)
Constant 1.687 -2.065%** -1.891%** -3.706%**
(4.005) (0.557) (0.176) (0.819)
Observations 19,705 19,705 19,705 19,705
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Sl Table 6. Ten-cross fold validation of Poisson count model with Zi timited, Zbt,Limited,
Zysurr,Limited, aNd ZpL+vsurr,Limited aNd using average summer Secchi based on measurements
from 2005 to 2013. Each cell gives the RMSE of for the given fold. Stata code:
ObservedSecchi0513.do.

Fold Zyit Limited Zpy Limited ZySURF Limited ZDL+VSURF Limited
1 28 25 2,835 28
2 11 28,300,000 2,467 7
3 916 13 11 10
4 13 12 23 19
5 18 23,986 49 1,771
6 26 808 24 12
7 136,905 17 9 15
8 17 11 21 11
9 434 29 14 256,329
10 11 16 12 56
Mean RMSE 13,838 2,832,492 546 25,826

SD of RMSE 41,023 8,489,172 1,056 76,836
Mean RMSE less largest RMSE 163.9 2,768.5 292.0 214.2
Mean RMSE less largest two RMSEs 69.9 116.3 20.1 19.7

Sl Table 7. Ten-cross fold validation of Poisson count model with Zi: augmented, ZpL,Augmented,
ZysurF,Augmented, aNd ZpL+vsurr,Augmented and using average summer Secchi based on
measurements from 2005 to 2013. Each cell gives the RMSE of for the given fold. For each
model we conduct 20 cross fold validation analyses, one for each model estimated over a
unique set of imputed average summer Secchi and maximum lake depth. The exception is the
model estimated with Zvsurr,augmented given this covariate vector does not contain any imputed
data. Stata code: ImputedSecchi0513.do.

Fold Ziit, Aug. ZpyAug. ZysuRF Aug. ZpL+VSURF,Aug.
Mean RMSE 75,503,402 258 13.17 661

SD of RMSE  1,065,058,326 1,138 13.57 3,103
Mean RMSE less largest RMSE 204 12.65 9.16 15.99
Mean RMSE less largest two RMSEs 73.54 8.25 6.95 8.26
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Sl Table 8. Variables in single (SL) and double LASSO (DL)-informed Z’s over lakes with water
recreation features. R code: LASSOWaterRec.R with the Limited dataset and
LASSOWaterReclmputed1.R — LASSOWaterReclmputed20.R with the Augmented dataset.

Zsy Limited

ZDL,Limited

ZSL,Augmented

ZDL,Augmented

Beach feature
count

Maximum lake depth

Lake area

Lake area

Average summer Secchi
depth

Marina feature
count

Maximum lake depth

Beach feature count

Average summer Secchi
depth

Spatial lag of average
summer Secchi depth

% of 500 m buffer around
lake in forest in 2011

% of 500 m buffer around
lake in Agriculture in 2011

Average forested wetland
area in lake’s subwatershed

Marina feature count

BBQ feature count

Spatial lag of average
summer Secchi depth

Spatial lag of boat launch
feature count

Average distance to the
nearest 5 lakes with Secchi
measurements

Average distance to the
nearest 5 lakes

Lake latitude

}\min
}\min,DL,FS
}\min,DL,SS
CVM
CVMbprs
CVMopyss

46.58

6348.73

46.58
0.602

6348.73
3.84

9.363 (0.000)

583.65 (0.093)

9.36 (0.000)
0.13 (0.041)

583.65 (0.093)
3.41 (0.087)

Notes: CVM = Cross-validation mean. Subscript SL indicates single LASSO. Subscript DL,FS indicates double LASSO,
first stage. Subscript DL,SS indicates double LASSO, second stage.
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Sl Table 9. Variables in VSURF-informed Z’s over lakes with water recreation features. R code:
VSURFWaterRec.R with the Limited dataset and VSURFWaterRecimputedl1.R —
VSURFWaterReclmputed20.R with the Augmented dataset.

ZysuRF,Limited ZysuRF,Augmented
Beach feature count | Lake area
Lake area Beach feature count

Toilet feature count Toilets feature count

Marina feature count | % of lake’s subwatershed area covered by lakes

% of 500 m buffer around lake in developed cover in 2011

Marina feature count

Average summer Secchi depth

Spatial lag of shelter feature count

% of pop. in lake’s subwatershed with a bachelor’s degree or higher,
11-15

Notes: Selected variables in “Dataset without imputed data” column are listed in order of predictive importance.
Selected variables in “Dataset with imputed data” column are listed in mean order of predictive importance over
the 20 sets of selected variables.
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Sl Table 10. Estimated Poisson count model with Z,t timited, ZoL Limited, ZVSURF,Limited, and
Zp1+vsurr Limited across lakes with water recreation features. Robust standard errors are in
parentheses. Stata code: ObservedSecchiH20Act.do.

Zyit Limited Zpy Limited ZysurF, Limited ZpL+VSURF Limited
Lake area 0.000135* 0.000118%*** 0.000105***
(8.14e-05) (2.56e-05) (2.37e-05)
Avg. summer Secchi depth -0.169** -0.409%** -0.340***
(0.0832) (0.0999) (0.111)
Max. depth 0.0303*** 0.0370%*** 0.0335%**
(0.00723) (0.00746) (0.00720)
Secchi depth sampled more than once 0.173
(0.244)
30-yr avg. temp. in lake’s subwatershed 0.0490
(0.170)
% of 500 m buffer in forest in 2011 0.0137*
(0.00715)
% of 500 m buffer in wetlands in 2011 0.00359
(0.0118)
Boat feature count 0.109
(0.0678)
Beach feature count 0.0509** 0.0424* 0.0502** 0.0416
(0.0233) (0.0250) (0.0248) (0.0254)
Hotel feature count 0.219
(0.713)
Shelter feature count 0.370%**
(0.140)
Toilets feature count 0.342%** 0.147%** 0.148%***
(0.118) (0.0442) (0.0447)
Picnic feature count 0.0569
(0.324)
BBQ feature count -2.483***
(0.890)
Marina feature count 0.150 0.647%** 0.543%**
(0.174) (0.123) (0.136)
Spat. lag of avg. summer Secchi depth 1.353** 0.403 0.371
(0.540) (0.314) (0.280)
Spatial lag of boat feature count -9.853
(9.056)
Spatial lag of beach feature count 14.50
(12.42)
Spatial lag of hotel feature count 82.05
(105.0)
Spatial lag of shelter feature count 121.8**
(47.92)
Spatial lag of toilets feature count -21.73
(14.55)
Spatial lag of picnic feature count 59.23
(52.20)
Spatial lag of BBQ feature count -6.800
(60.68)
Spatial lag of marina feature count -49.85
(51.28)
Avg. dist. to nearest 5 lakes w/ Secchi measure 0.0250**
(0.0127)
Avg. size of nearest 5 lakes 0.000375
(0.000338)
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Zyit Limited Zpy Limited ZysurF, Limited ZpL+VSURF Limited
Dist. to nearest CBSA 1.71e-05
(3.34e-05)
Pop. den. in subwatershed -0.000601*
(0.000322)
% of 500 m buffer in dev. cover in 2011 0.0334***
(0.00677)
Avg. dist. to nearest 5 lakes 0.0264
(0.0307)
Avg. dist. to closest CBSA across the nearest 5 1.486-05
lakes
(3.47e-05)
Lake count in subwatershed -0.0191
(0.0129)
Lake area in subwatershed 0.0181
(0.0170)
% of pop. in lake’s subwatershed with a BA or 0.0452%**
higher, 2011-15
(0.00806)
% of pop. in lake’s subwatershed that is poor,
2011-15 0.0320
(0.0217)
% of pop. in lake’s subwatershed that is white,
2011-15 -0.0125
(0.00874)
Median age in lake’s subwatershed, 2011-2015 0.0167
(0.0240)
Median HH inc. in lake’s subwatershed, 2011- 5.350.06
2015
(8.84e-06)
Spat. lag of summer PUD count 0.0532
(0.136)
Latitude 0.0322
(0.195)
Longitude -0.0431
(0.0370)
Low ag. region -0.521
(0.569)
High ag. region -0.491*
(0.267)
Constant -11.04 2.197*** 2.440*** 1.886***
(8.943) (0.814) (0.158) (0.711)
Observations 435 435 435 435

88



Sl Table 11. Estimated Poisson count model with Zyit augmented, ZbL,Augmented, ZVSURF,Augmented, and
ZpL+vsURF,Augmented across lakes with water recreation features. Robust standard errors are in
parentheses. Stata code: ImputedSecchiH20Act.do.

ZLit,Aug. ZDL,Aug. ZVSURF,Aug, ZDL+VSURF,Aug.
Lake area 0.00001 0.00007***  0.00002* 0.00001
(0.00002)  (0.00001) (0.00001)  (0.00001)
Avg. summer Secchi depth 0.00113 0.075 0.068 -0.017
(0.07026)  (0.072) (0.047) (0.074)
Max. depth 0.01216*** 0.011*** 0.009%***
(0.0038) (0.003) (0.002)
30-yr avg. temp. in lake’s subwatershed 0.040
(0.115)
% of 500 m buffer in forest in 2011 0.00908* -0.019*** 0.016***
(0.00523)  (0.005) (0.005)
% of 500 m buffer in wetlands in 2011 -0.00705
(0.00702)
% of 500 m buffer in ag. in 2011 -0.032*** 0.005
(0.007) (0.007)
Average forested wetland area in lake’s subwatershed -0.069** -0.003
(0.028) (0.004)
Boat feature count 0.156***
(0.056)
Beach feature count 0.113%** 0.086%** 0.088***
(0.045) (0.021) (0.022)
Hotel feature count -0.776
(0.628)
Shelter feature count 0.144
(0.175)
Toilets feature count 0.475%** 0.53*** 0.543%**
(0.064) (0.075) (0.076)
Picnic feature count -0.07208
(0.12897)
BBQ feature count 0.011 -0.003 0.448
(0.324) (0.322) (0.354)
Marina feature count 0.24%* 0.697*** 0.552%** 0.393%**
(0.126) (0.221) (0.106) (0.11)
Spat. lag of avg. summer Secchi depth 0.539 -0.360 0.358
(0.423) (0.302) (0.246)
Spat. lag of boat feature count -25.652***  12.764
(7.288) (9.045) -3.05 (5.721)
Spat. lag of beach feature count -3.912
(5.795)
Spat. lag of hotel feature count 514.918**
(212.517)
Spat. lag of shelter feature count -22.408* 2.992 -2.927
(11.758) (11.369) (10.648)
Spat. lag of toilets feature count -4.386
(6.084)
Spat. lag of picnic feature count 57.881**
(23.604)
Spat. lag of BBQ feature count 15.244
(39.643)
Spat. lag of marina feature count -5.932
(29.195)
Avg. dist. to nearest 5 lakes w/ Secchi measure 0.029*** 0.016* 0.033***
(0.008) (0.009) (0.008)
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Ziit Aug. ZpLAug. Zvsurr,Aug. ZDL+VSURF,Aug.
Avg. size of nearest 5 lakes -0.00028
(0.00046)
Dist. to nearest CBSA 0.00005*
(0.00002)
Pop. den. in subwatershed -0.00009
(0.00024)
% of 500 m buffer in dev. cover in 2011 0.018*** 0.009*** 0.025%**
(0.005) (0.003) (0.005)
Avg. dist. to nearest 5 lakes -0.00036 -0.019 0.014
(0.02353)  (0.047) (0.023)
Avg. dist. to closest CBSA across the nearest 5 lakes -0.00004*
(0.00003)
Lake count in subwatershed -0.00182
(0.00817)
Lake area in subwatershed 0.028*** 0.024%*** 0.03%**
(0.008) (0.007) (0.007)
% of pop. in lake’s subwatershed with a BA or higher, 2011-  0.043*** 0.025%** 0.028%**
15 (0.008) (0.006) (0.005)
% of pop. in lake’s subwatershed that is poor, 2011-15 -0.029*
(0.015)
% of pop. in lake’s subwatershed that is white, 2011-15 -0.011
(0.007)
Median age in lake’s subwatershed, 2011-2015 0.002
(0.018)
Median HH inc. in lake’s subwatershed, 2011-2015 -0.00002***
(0.00001)
0.35%**
Spat. lag of summer PUD count (0.093)
Latitude 0.016 0.053
(0.124) (0.050) 0.032 (0.04)
Longitude -0.016
(0.021)
Low ag. Region -0.396
(0.279)
High ag. Region -0.195
(0.237)
Constant -2.387 1.342 0.815%** -3.064
(6.258) (2.352) (0.238) (2.005)
Observations 696 696 696 696
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Sl Table 12. Ten-cross fold validation analysis with Zyit Limited, ZpL Limited, ZVSURF,Limited, aNd
Zp1+vsurr, Limited across lakes with water recreation features. Each cell gives the RMSE of for the
given fold. Stata code: ObservedSecchiH20Act.do.

Fold Zyit Limited Zpy Limited ZysURF Limited ZDL+VSURF Limited
1 18 75 a7 14
2 65 13 27 14
3 51 97 77 41
4 46 10,300,000 24 98
5 189 41 105 98
6 11,808 30 54 37
7 31 18 19 8,388,530
8 105 40 15 120
9 252 43 2,780,000,000 39
10 27 18 23 16
Mean RMSE 1,259 1,030,038 278,000,039 838,901
SD of RMSE 3,517 3,089,987 833,999,987 2,516,543
Mean RMSE less largest RMSE 87.2 41.8 43.6 53.2
Mean RMSE less largest two RMSEs 66.5 34.9 36.0 a4.7

Sl Table 13. Ten-cross fold validation analysis with Zyit augmented, ZoL,Augmented, ZVSURF,Augmented, and
ZpL+vsuRF,Augmented aCross lakes with water recreation features. For each model we conduct 20
cross fold validation analyses, one for each model estimated over a unique set of imputed
average summer Secchi and maximum lake depth. Stata code: ImputedSecchiH20Act.do.

Fold Lyt Aug. Zp1,Aug. ZVSURF,Aug. ZpL+VSURF,Aug.
Mean RMSE 685 43,974 408 198

SD of RMSE 2,448 606,851 2,079 316
Mean RMSE less largest RMSE 189 145 77.3 113
Mean RMSE less largest two RMSEs 105 66.2 48.0 80.0
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Sl Table 14. Estimated IV Poisson count model with Zyjt Limited across lakes with water
recreation features. Robust standard errors are in parentheses. Stata code:
ObservedSecchiH20ActIV.do

Zyjt Limited
Avg. summer Secchi depth 0.177
(2.386)
Lake area 0.00005
(0.00016)
Max. depth 0.426
(0.311)
Secchi depth sampled more than once 0.005
(0.136)
30-yr avg. temp. in lake’s subwatershed 0.023
(0.093)
% of 500 m buffer in forest in 2011 0.009
(0.018)
% of 500 m buffer in wetlands in 2011 0.002
(0.038)
Boat feature count 0.21
(0.324)
Beach feature count 0.238**
(0.114)
Hotel feature count 0.567
(2.616)
Shelter feature count 0.217
(0.321)
Toilets feature count 0.115
(0.211)
Picnic feature count 0.091
(0.276)
BBQ feature count -0.331
(0.299)
Marina feature count 0.167
(0.439)
Spat. lag of avg. summer Secchi depth -0.121
(4.865)
Spat. lag of boat feature count -25.389**
(12.271)
Spat. lag of beach feature count -10.877
(32.475)
Spat. lag of hotel feature count 548.929
(644.874)
Spat. lag of shelter feature count -34.572
(27.373)
Spat. lag of toilets feature count -3.055
(9.289)
Spat. lag of picnic feature count 70.65
(62.217)
Spat. lag of BBQ feature count -55.465
(142.254)
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Zyit Limited

Spat. lag of marina feature count

Avg. dist. to nearest 5 lakes w/ Secchi measure

Avg. size of nearest 5 lakes

Dist. to nearest CBSA

Pop. den. in subwatershed

% of 500 m buffer in dev. cover in 2011

Avg. dist. to nearest 5 lakes

Avg. dist. to closest CBSA across the nearest 5 lakes
Lake count in subwatershed

Lake area in subwatershed

% of pop. in lake’s subwatershed with a BA, 2011-15
% of pop. in lake’s subwatershed that is poor, 2011-15
% of pop. in lake’s subwatershed that is white, 2011-15
Median age in lake’s subwatershed, 2011-2015
Median HH inc. in lake’s subwatershed, 2011-2015
Spatial lag of summer PUD count

Latitude

Longitude

Low ag. Region

High ag. Region

Constant

Observations

41.975
(282.767)
0.025
(0.048)
0.00021
(0.00178)
0.00001
(0.00002)
0.00016
(0.00042)
0.019%**
(0.006)
-0.008
(0.15)
-0.000003
(0.000026)
-0.004
(0.023)
0.045
(0.032)
0.028
(0.025)
0.013
(0.037)
0.001
(0.008)
-0.006
(0.016)
0.000002
(0.000031)
0.481
(0.504)
-0.044
(0.137)
0.002
(0.079)
-0.484
(1.699)
-0.172
(0.216)
0.395
(5.841)

870
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Sl Text 1. List of all potential covariates

Variable name

Variable definition

<<To be added>>
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