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Let G be a connected semisimple Lie group with finite center and K a
maximal compact subgroup. Denote (i) Harish-Chandra’s Schwartz spaces by
€?(G)(0 < p < 2), (1) the K-biinvariant elements in €?(G) by J?(G), (iii) the
positive definite (zonal) spherical functions by #, and (iv) the spherical trans-
form on ¥°(G) by ¢ — ¢. For T a positive definite distribution on G it is
established that (i) 7 extends uniquely onto €*(G), (ii) there exists a unique
measure p of polynomial growth on 2 such that T[¢] = [z ¢du forall ¢ € FYG),
(iii) all measures p of polynomial growth on £ are obtained in this way, and
(iv)} T may be extended to a particular #?(G) space (1 < p < 2) if and only if
the support of p lies in a certain easily defined subset of . These results gener-
alize a well-known theorem of Godement, and the proofs rely heavily on the
recent harmonic analysis results of Trombi and Varadarajan.

1. INTRODUCTION

Suppose T is a positive definite distribution on R™. In [15] Schwartz
proves the following sequence of facts about 7.

(i) T can be expressed as a finite sum of derivatives of bounded
functions;
(it) T is a tempered distribution; and
(i) 7 is the Fourier transform of some unique tempered
measure on R™ (the Bochner theorem).

In this paper we generalize the above procedure to prove a Bochner
theorem for the spherical transform on a connected semisimple Lie
group with finite center.

* These results comprise the main part of the author’s thesis. The author is deeply
indebted to his adviser, Professor S. Helgason of M.I.T., for the initial suggestion of
the problem and for the guidance and encouragement given during the period of its
solution.
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180 WILLIAM H. BARKER

Suppose G is a separable unimodular Lie group. In [3] we have
shown that any positive definite distribution 7" on G can be written as

a finite sum o
T =) DIE'f;, (1.1)
7

where, for each j, f; is a bounded function and D7 (resp. E’) is a left
(resp. right) invariant differential operator on G. This generalizes (i).

To obtain (ii) is more difficult since the notion of a “rapidly
decreasing function” on an arbitrary Lie group is not easily definable.
Harish-Chandra has shown in [8] that Schwartz spaces do exist for G
a connected semisimple Lie group with finite center; in fact there
exists a whole family of such spaces ¥2(G) CL?(G) (0 < p < 2),
where ¥7(G) C ¢4 G) when p < q. From (1.1) it is an easy matter
to show that each positive definite distribution extends uniquely
to a continuous linear functional on ¥(G). This generalizes (ii).

In the R™ case, proving (iii) from (ii) relies on the isomorphism of
the Euclidean Schwartz space #(R") onto itself given by the Fourier
transform f — f. Unfortunately this is not totally available to us, for
although it is possible to define a Fourier transform on the €?(G)
spaces, it is as yet unknown what the image spaces are, or even
whether the mapping is injective. The only known facts for this
problem are given in [1], where positive results for €% G), G of real
rank one, are obtained.

We must instead consider the spaces #7(G), where, for K some fixed
maximal compact subgroup of G, #P(G) equals all K-biinvariant
elements of €7(G). For each e > 0 we define spaces Z(F¢) consisting
of rapidly decreasing functions on certain sets %< of elementary
spherical functions. In [16], Trombi and Varadarajan prove, gener-
alizing earlier known results, that the spherical transform ¢ — ¢
is a topological isomorphism of #?(G) onto Z(F*) for e = (2/p) — 1.
Hence any positive definite distribution gives rise to a unique element
in (AYG)) to which harmonic analysis may be applied via the
spherical transform. For a general positive definite distribution T it
can only be hoped that this procedure will yield an integral formulation
for T[] where ¢ is K-biinvariant. It does, however, yield the full
result when T itself is K-biinvariant.

We apply the Trombi—Varadarajan result to the partial Bochner
theorem of Godement [6]. Godement’s theorem gives, for T a positive
definite distribution on G, the existence of a unique measure p
supported on the positive definite spherical functions # such that

Tipwi] = [ o6 du
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for all K-biinvariant test functions ¢ and . There is no property of
“temperedness” of u given here, and the heart of proving an analog
of (i) is in defining a notion that a measure on Z is of “polynomial
growth,” then showing that the above p is such an object. The
theorem we arrive at is the following.

THE SPHERICAL BOCHNER THEOREM. Suppose T is a positive
definite distribution on G. Then T extends uniquely to a continuous linear
functional on €YG) and there exists a unique positive regular Borel
measure p of polynomial growth on P such that

Tlol = | ¢dp. 9 SYG)

The correspondence between T and p is bijective when restricted to
K-bitnvariant distributions, in which case the formula holds for all
@ € €YG).

Using the Trombi-Varadarajan theorem we may relate the largest
#P(G) space to which a positive definite distribution 7" can be extended
with the support of its spherical Bochner measure p. The result is the
following.

THE EXTENsION THEOREM. Suppose T is a positive definite distri-
bution on G with spherical Bochner measure p. Then T generates a
continuous linear functional on F?°(G) (1 < p < 2) if and only if the
support of p falls in F<, e = (2[p) — 1.

While this is a natural result in view of the Trombi-Varadarajan
theorem, the proof is surprisingly complicated. It should be noted that
for p = 2 this result was first proved by Muta [14] in much the same
way as the Euclidean Bochner theorem is proved in Schwartz [15].

2. NOTATION AND PRELIMINARIES

(a) General notation. The standard symbols Z, R, and C shall be
used for the integers, the real numbers, and the complex numbers,
respectively; Z+ is the set of nonnegative integers. If ¥ € C then ¥
denotes the complex conjugate of z. If S is a set, T a subset, and f
a function on S, the restriction of f to T is denoted by f!,.

If S is a topological space, T C S, then CI(T") denotes the closure
of T in S, Iny(T) the interior of 7, and Bdry(7T) the boundary of 7.
The space of continuous functions from S to C is denoted by C(S),
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C/(S) the set of those of compact support. The support of any f € C(S)
is denoted by supp f.

Suppose S is a locally compact Hausdorff space. The subspace of
C(S) of functions vanishing at infinity is denoted by Cy(S). We call
the o-ring generated by the compact subsets of S the Borel sets of S,
and any measure defined on these sets and finite on compacts a Borel
measure.

For S a topological vector space, let S” denote the continuous dual.

(b) Representations. Let G be a locally compact group which is
countable at infinity, and E a locally convex, complete, Hausdorff
topological vector space over C. Then a (continuous) representation =
of G on E is a homomorphism of G into Aut(E) such that
(g, v) > n(g)v of G X E — E is continuous. A representation = lifts
to a homomorphism of the algebra of Radon measures on G
with compact support into the continuous endomorphisms of E by
m(u)o = [ m(g) vdp(g), ie., for each TeE we have T[n(p)v] =
[; Tln(g)o] du(e).

(c) Positive definite functions. Let G be an arbitrary group with
identity e, not necessarily topological. A function f from G to C is
said to be positive definite (written f > 0) if the inequality

m
Y o f(x0) >0
jde1

holds for all subsets {x,,..., x,,} of elements of G and all sequences
{2y ,.ey @y} of complex numbers. For such functions the following
properties are true.

f(e) =0 and [ ()] < f(e) forall xeG; (2.1)
f=r* where  f*(x) = f(x1) forall xeG. 2.2)

(d) Manifolds. Let M be a C* manifold countable at infinity.
We write 2(M) for the space of C* functions on M of compact
support, and for each compact subset H of M we write 2,(M) for the
subspace of functions of Z(M) with support in H. For each H,
Dy(M) is topologized by means of uniform convergence on compacts
of functions along with their derivatives, and Z(M) is given the
inductive limit topology of the Z,(M) spaces. 2'(M) denotes the
dual space of Z(M), called the space of distributions on M.
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Let 7 be a diffeomorphism of M onto itself, and take f € Z(M) and
D a differential operator on M. If f* = fo+! and Df = (Df"),
then f7 is in (M) and D~ is another differential operator on M.

If V is a vector space over R, (V) denotes the Schwartz space of
rapidly decreasing functions on V' with the usual topology.

(e) Lie groups. If G is a group and a € G, L(a) denotes the left
translation ¢ — ag and R(a) denotes the right translation g — ga™!
on G. Lie groups will be denoted by Latin capital letters and their
Lie algebras by corresponding lower case German letters. The
identity of any Lie group is denoted by e.

Let G be a connected semisimple Lie group with finite center,
g the Lie algebra of G, and { , ) the Killing form of g. Let § be a

Cartan involution of g. This is an involutive automornhism such that

el 1AVl 4 4 RS IS QL IUVUILUIYT aUlUILIUL puiisiia Su

the form (X, Y) — —(X 0Y ) is strictly positive definite on g X g.
Let g = T 4 p be the decomposition of g into eigenspaces of g (a
Cartan decomposition) and K the analytic subgroup of G with Lie
algebra f. It 1s known that any maximal compact subgroup K; of G is
associated in this way with some Cartan decomposition of g.

Let a Cp be a maximal abelian subspace, a* its dual, and a* the
complexification of a*, i.e., the space of R-linear maps of a into C.
Let A = exp a and let log be the inverse of the map exp:a — 4.
For A €a* put

g = {Xeg|[H, X] = NH)X, for all He a).

If A#0 and g, {0} then A is called a (restricted) root and
m, = dim(g,) is called its multiplicity. If A, p€a*, let H,€a, be
determined by A(H) = (H, , H) for H €eaand put (A, u> = {H,, H)>.
Since { , > is positive definite on p we put | A| = <A, A>12 for A o*
and | X | = (X, X)'/2 for X ep. Let a’ be the open subset of a
where all restricted roots are % 0. The components of o’ are called
Weyl chambers. Fix a Weyl chamber a* and call a (restricted) root «
positive if it is positive on a*. Let 2 denote the set of restricted roots
and X+ the set of positive roots. Let p denote half the sum of the
positive roots with multiplicity, i.e., p = $ 3 cse mox. Let n =Y, 4 6.,
i1 = fn and let N and N denote the corresponding analytic subgroups
of G. Let M denote the centralizer of 4 in K, M’ the normalizer of 4
in K, and W the (finite) factor group M’/M. The group W, called the
Weyl group, acts as a group of linear transformations on a and also on
o * by (sA)(H) = As'H) for He a, A€ a.*, and s € W. Let s* be the
unique element of W such that s¥(Z+) = —ZX+. Then s* = —p.
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Let @ denote the order of W, A+ = exp at; then we have the
decompositions

G = K Cl(4*)K  (Cartan decomposition), (2.3)
G = KAN  (Iwasawa decomposition). 24

Here (2.3) means that each g€ G can be written g = k,4A(g) k,,
where &k, , k, € K and A(g) € Cl(4+); A(g) is actually unique. In (2.4)
each g € G can be uniquely written g = k(g) exp H(g) n(g), k(g) € K,
H(g) €, n(g) € N.

The number / = Dim a is called the real rank of G.

(f) Convolutions and normalization of measures. With G a con-
nected semisimple Lie group with finite center and K a fixed compact
subgroup it is convenient to make some conventions concerning the
normalization of certain invariant measures. The Killing form
induces Euclidean measures on 4, a, and a*; multiplying these by the
factor (27)~'/2, we obtain invariant measures da, dH, and dA, and the
inversion formula for the Fourier transform

f(/\) — f f(a) e—i/\(loga) da, Aea*, fE SP(A),
A
holds without any multiplicative constant,

flay = [ fye™e an,

a*

We normalized the Haar measure dk on the compact group K such
that the total measure is one. The Haar measures of the nilpotent
groups N, N are normalized such that

8(dn) = d, f e PH g g
N
The Haar measure dx on G can be normalized such that
J' f(x) dx = J f(kan) 998 dk dadn,  fe D(G).
G KAN

Let 4(G) and C(K\G/K) be the subspaces of K-biinvariant
functions in Z(G) and C(G), respectively. Both are given their
respective relative topologies. Defining the convolution of two
functions f and g by

) = [ f@e)dr,  yeG,

we have that £(G) is commutative under convolution.
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For f locally integrable on G we define
f4&) = [ flugh)dk by, geG.
kXK

Then f — f¥ is a continuous linear mapping of 2(G) onto %(G).

(g) Differential operators. For G any Lie group let D(G) denote
the algebra of all left invariant differential operators on G. Take
{X{,..., X,;} to be any basis of g. The Birkhoff-Witt theorem gives
that {X71 -+ X5 | ¢; > 0} is a basis of D(G) when each X is considered
as a left invariant vector field on G.

With G and K as in (f) let Dy(G) denote the set of all D e D(G)
which are invariant under all right translations from K.

(h) Spherical functions. With G and K as in (f) let a nonzero
function ¢ € C(G) be a (zonal) spherical function if it satisfies any
of the following equivalent conditions.

() Jxp(xky) dk = o(x) p(¥), %,y € G;
(i) ¢eC(K\G/K), gle) =1, and frp = ([ f(g) (g ")dg)p,
fe C(K\GIK);
(i) e C(K\GIK) and L:f— [;f(g)e(g)dg is a homo-
morphism of C(K\G/K) onto C; and
(iv) peC*(K\GIK), ¢(e) = 1, and Dp = (Dg(e))p, D € Dy(G).

Let #1 be the set of all bounded spherical functions and Z the
subset of all positive definite spherical functions. Giving &£ the
Godement topology, i.e., the weak* topology as a subset of L*(G),
makes Z into a locally compact Hausdorff space.

_ For any measurable function f on G we define its spherical transform

/by
flel = [ f&) wle) de (2.5)

for all spherical functions ¢ for which the integral is defined. In
particular, if f€LYG), then f is defined on %7, hence on Z, and
fe Cy(P) [6, p.- 7). The following properties are quickly verified for
f, g e LYG).

(foy=f on#Fy (2.6)

(flel =Flp*] for ¢eFl  hence (f¥)°=f on Z; (27)

(f*g* =f-8# on F1 iffis right K-invariant or
if g is left K-invariant. (2.8)
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Thus if f € LY(G) is right K-invariant, then
(fxf*r=1fF on 2. (2.9)

There exists a basic parametrization and formula for the spherical
functions given by Harish—Chandra: the spherical functions are
precisely the functions

wilg) = [ expld — p)H(gh) dk, g€, (2.10)

where A €q,* is arbitrary; moreover, ¢, = ¢, if and only if A = sp
for some s € W. Hence & and %! can be viewed as subsets of W\a *,
or by an obvious abuse of notation, as subsets of a,*. Certain properties
are:

() ealg™) =o8), Aear geCy (2.11)
(i) ¢-x(8) = @i(8), AeaX geG; (2.12)
(i) A€ 2 implies A and A are Weyl group conjugate;

(iv) If w is the Casimir operator on G, then

wp, = —(ALD +{p,p)ers AEak

(v) The Helgason—Johnson theorem: Let C, be the convex
hull of {sp | s€ W} in a*. Then F! = a* 4 iC,;

(vi) The Godement topology on & is the same as the topology
induced by the Euclidean topology of a *.

Remarks. (i) is [7, Lemma 45]; (ii) follows by easy computation;
(iii) follows from (i), (i), and (2.2); (iv) is [7,p-271]; (v) is
[12, Theorem 2.1]; a proof of (vi) based on (iv) can be found in
[2, p. 30].

From (2.11) we can reformulate (2.5) to be

o = [ o) de, Aear
Then for f € £(G) it is known that
f@) = [ fe@lci2a,  geG,
where w = order of W and

o) = [N exp(—(iA + p)(H(7)) dii, A€ a*.
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(1) Distributions on Lie groups. Suppose G is a separable Lie group.
Then the topology on Z(G) can be described by means of left (or right)
invariant differential operators on G [4, Proposition 2]. Let ¢, ¢ € 2(G)

and let D (resp. E) be a left (resp. right) invariant differential operator
on G. Then

Digxp) = p+(DY)  and  E(prh) = (Ep)si

It follows that if ¢, — ¢ and ¥, — ¢ in Z(G), then ¢, ¢, — pxb
in Z(G).

If dx is a left Haar measure on G, then a function £, locally summable
with respect to dx, can be identified with the distribution 7; € 2'(G)
defined by

Tiel = [ o) f(®) v, ¢e2(G).

For each differential operator D on G we let ‘D be the adjoint with
respect to dx. Then given T € Z'(G), we define DT € 2'(G) by

DT[g] = T['Dg], e Z(G).

Let G be a connected, semisimple Lie group with finite center,
and K a maximal compact subgroup. Then T € Z'(G) is called
K-biinvariant if T[p *0R%)] = T[g] for all p € Z(G) and %, , k, € K.
Notice that 7' K-biinvariant implies T[¢"] = T[¢], ¢ € Z(G).

3. THE ¥7(G), #?(G), AND Z(F<) SPACES
(a) The spaces €°(G). Let G be a connected semisimple Lie

group with finite center and K a maximal compact subgroup. On G
define the two functions

E(e) = | exp(—p(H(gh) dk,  g<G,

o(g) =1X], where g =Fkexp X, kK, Xep.
For 0 <p <2 let ¥7(G) be the set of infinitely differentiable
functions f such that, for each meZ*+ and each left (resp. right)

invariant differential operator D (resp. E),

sup(l + o)™ 5-2/» | DEf| < co.
G
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Topologizing in the obvious manner makes each ¥7(G) into a Fréchet
space. Since | 5| < 1, it is clear that p < ¢ implies ¥7(G) C €%G),
and the existence of 7 > 0 shown in [8, Lemma 11] such that

|, Eert + oy dg < w0

shows that €7(G) C L?(G).

Define two maps L and R from G into Aut C*(G) by L(g) f = f*@
and R(g) f = fR9. Then for each 0 < p << 2 we have that both L
and R are differentiable representations of G on €?(G). Moreover,
2(G) is dense in each ¥?(G), and each is a convolution algebra.
The proofs of these facts do not differ significantly from those given
in [17, Section 8.3.7] for the p = 2 case.

(b) The spaces F#P(G). Define #P(G) to be the space of K-
biinvariant elements of €7(G); we give F?(G) the relative topology
as a subset of ¥7(G). It is a consequence of [17, Lemma 2, p. 164] that
only left invariant differential operators need be considered in defining
the topology of #7(G). Since 2(G) is dense in ¢?(G) it is not hard to
show that £(G) is dense in #P(G). But the following slightly stronger

result is available to us.

ProrosiTION 3.1.  Suppose f € F?(G) for all p > p, for some fixed
o > 0. Then there exists a sequence {p;}7; C I(G) such that ¢; — f
in I2(G) for all p > p, .

The proof of this result follows the same lines as the proof that Z(G)
is dense in #%(G) given in [10, p. 571].

The continuous linear functionals on £7(G), ¥?(G), and Z2(G)
are related in the following manner.

ProrositioN 3.2. (1) T e(¥7(G)) = T |y € Z'(G). This corre-
spondence is one-to-one.

(i) T e(B?(G)) = T |soc €(FP(G)). Moreover, when re-
stricted to the K-bitnvariant elements in (€7(G)) this correspondence
becomes one-to-one and onto.

Proof. (i) is obvious, the one-to-one property coming from the
density of 2(G) in ¥7(G). The first part of (ii) is also obvious from the
definition of the .#7(G) spaces. To complete the proof we first show
that f — f % defines a continuous endomorphism of ¥?(G) onto #7(G).
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For each xeG let S,e(%?(G)) be defined by S,[¢] = ¢(x),
@ € €?(G). Then Section 2(b) gives that

f3) =[] Sk Riko) £) by by

=S, [[]_, Lik) Rit) f by dis]
— L(dk) R(dk) f(x)

whenever f € €7(G). This proves the desired continuity of f — f&.

Thus, given Se(Sf?(G)), we may define T e(%¥?(G)) by
T[f] = S[f¥, fe¥?(G). This proves the onto property of the
mapping in (ii), and the uniqueness of the K-biinvariant 7 follows
quickly. ||

(c) The spaces Z(F<). Let C, be the closed, convex hull in a*
of the finite set {sp | s € W}, and for each € > 0 let #*< = a* + 7eC,
in a.*. Since C, is W-invariant, then C, = s*C, = —C,, and hence
—F¢« = %< for each € > 0. Moreover, each %< is convex and
Int F¢ = Upeerce #¢ [16, Lemma 3.2.2].

Define Z(#°) = &(a*) and for any € > 0 define Z(F<) to be the
space of all C-valued functions @ such that (i) @ is defined on Int F*
and holomorphic there, and (ii) for each holomorphic differential
operator D with polynomial coefficients we have sup;;z¢ | DP | < .
Each Z(#¢) is an algebra and, when topologized in the obvious
manner, becomes a Fréchet space with multiplication being jointly
continuous. For each D as in (i) and each fe Z(%*) it can be shown
that Df extends to a continuous function on all of F< [16, p. 278].
We define Z(F<) to be the closed subalgebra of W-invariant elements
of Z(%*). The main result of the subject is the following.

THEOREM 3.3 (Trombi-Varadarajan). Let 0 <p <2 and e =
(2/p) — 1. Then the spherical transform f— f is a linear topological
isomorphism of IP(G) onto Z(F <) which preserves the algebraic structure.

Remarks. (1) This theorem was proved by Trombi and Varadarajan
in[16, p. 298], generalizing earlier results by Ehrenpreis and Mautner,
Harish-Chandra, and Helgason. The most difficult part of the proof
is in proving subjectivity. (2) At this stage we could proceed to state
and prove a number of needed technical lemmas about the Z(F¢)
spaces. We will refrain from doing so, however, and instead shall place
them in the final sixth section of the paper, citing their use in Sections 4
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and 5 when needed. This enables us to get quickly to the main problem
at hand while also motivating the need for the various detailed results
that are proved in Section 6.

4. THE SPHERICAL BOCHNER THEOREM

Let G be a separable unimodular Lie group. A distribution 7 on G
is said to be positive definite (written 7' > 0) if T[pxe*] > 0 for all
@ € 2(G). Then for any f € C(G) we have f > 0 if and only if T; > 0.
The following result is proved in [3, Section 5].

THEOREM 4.1. Suppose T € Z'(G), T > 0. Then T can be expressed
as a finite sum
T =) DEf;,
i

where, for each j, f; is a bounded function and D’ (vesp. E7) is a left
(vesp. right) invariant differential operator.

Let G be a connected semisimple Lie group with finite center and
K a maximal compact subgroup. Then Godement has proved the
following partial Bochner theorem (notation as in Section 2(h)).

TueoreM 4.2. Suppose T € D'(G), T> 0. Then there exists a
unique positive regular Borel measure p on P such that

(@) ¢eL¥(w), pcH(G); and
() Tlpsd] = [0 40 du, 9, ¥ € F(G).

Remarks. Theorem 4.2 was first presented in [6]; a slightly
different proof may be found in [2]. The measure p is called the
spherical Bochner measure of 7. Our procedure now will be to extend
Theorem 4.2 by the use of Theorem 4.1 and the Trombi—Varadarajan
result.

Lemma 4.3. Suppose Te2'(G), T> 0 with spherical Bochner
measure u. Then T extends uniquely to an element in (6Y(G))" and

Tipf] = [ ¢ dp

for all € FNG) and all ¢ € F(G) such that $ € L\(u).
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Proof. That T extends uniquely into (¢%G)) is clear from
Theorem 4.1 and the properties of €Y(G). Pick {¢,}7_; in #(G) such
that ¢, — ¢ in #Y(G). The Godement theorem gives

Tipwhs] = | ¢ di,

and since g, — @xp in FYG), then Tpxi,] — T{pxy]. We are
left with showing [» ¢, du — [ ¢ du as n — oo.

From the Helgason-Johnson theorem (Section 2(h)) we see that
P C F1, and hence [ ¢ dy is well defined since i i is extendable to all
of Z1 as a continuous function. Theorem 3.3 gives ¢, —  in Z(F1),
and hence, in particular, {l/:ﬂ},, 1 is uniformly bounded on F*.
Dominated convergence then gives [, ¢, du — [ ¢bdu. |}

DEFINITION. A positive regular Borel measure u on 2 is said to be
of polynomial growth if there exists a holomorphic polynomial O on
a.* such that [ (dp/| Q) < co.

Lemva 44. Suppose Te Z'(G), T > 0 with spherical Bochner
measure .. Then p is of polynomial growth.

Proof. By Lemma 4.3 we have T € (¥Y(G))’. Hence the Trombi-
Varadarajan theorem gives that T e (Z(FY)), where T[] = T[¥]
for all y € #YG). Let ¢, ,..., €; be any basis of a* and for each A € a *
determine A, ,...,A, € C by A = ¥; \¢; . For each m, t € Z* define the
continuous seminorm o,,! on Z(Z1) by

0 (@) = sup (1 +{ALR) [ (a1 PR,
IMi<m, relntF!
where M = (my,...,my), | M| = my + -+ + m,, (d[d\)M = (&]eA,)™ -+
(&/oX )™, and || € + in |2 = | £ ]2 + | 7|2 for all £ 7 € a*.
Since T is continuous on Z(F1) there exists m, t € Z*+ such that
| T[®]! < 0,,4(D) for all ® e F(F1). Thus Lemma 4.3 gives

\ L@Z; dy } < on'(@) 4.1)

for all b € #YG) and all p € £(G) such that $ € L(p).

Take 3; to be an approximation of the identity in Z(G) such that
IG | B(g)[ dg = 1 for each j. Then §; — 1 pointwise on a* and
18,1 <1 on 2. Defining ;= 8 x(8; *)“ we see by Section 2(h) that
¢ = | 3 2 < 1on#and $; — 1 pointwise on a,*. By the Godement
theorem ¢; € LYp).
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Let Q be a W-invariant, holomorphic polynomial on a * of degree
> 2 which is uniformly bounded away from zero on #* and which is
positive on & (Proposition 6.1). For each j define ¥; = ¢;/Q. Then
¥, e Z(F') (Proposition 6. 1), and hence there exists a unique
«//, € #YG) such that ¥; = z,l;J by the Trombi—Varadarajan theorem.
We claim that with m and ¢ as specified in (4.1) we have only to show
{0, 4¢:,)}1 is uniformly bounded with respect to J:

For suppose there exists ¢ > 0 such that o,(¢;) < ¢ for all j.
Then (4.1) gives

| { ($521Q) dp ) <e¢ foralljeZ+.
‘p

But on # we have that O > 0, 0 < ¢; < | and ¢; — 1 pointwise.
Thus, applying monotone convergence to [ infy;; (§,%/0) du gives
J# (du/Q) < c, or that p is of polynomlal growth.

To show that {am‘(q%l:])}:, ° , i1s uniformly bounded, first note that
each term (d/dA)M(¢;2/Q) may be expanded out into the form

Swsxew Cr(d]dNy(1/Q)(d|dN($?). Hence

ow(@f) SC T Ow sup |d/dN;)

IN+R|<m

for

Oy = sup (1 +[AP)1(d/aA)™(1/Q).
AeIntF

We first claim that Qy << oo for each N. For note that (d/d/\)N(I/Q)
is a rational function on #* with the order of the denominator minus
order of the numerator being > order Q > 2¢. Hence, since Q is
strictly bounded away from zero on Z!, we must have that
(1 + | Al®) (d[dA)¥(1]/Q)| is a bounded function on F#1.

We have therefore only to prove that SUPjeints1 I(d/dX)R(¢;%)| is
umforrnly bounded inj for each R. To do so it is sufficient to show that
Uj—1 supp(g;e;) is relatwely compact and that [; | ;xp;(g) dg is
uniformly bounded in j (Proposition 6.4). But these both follow easily
from the definition of ¢;. |}

Remark. 'The proof of Lemma 4.4 is based on the proof for the
Euclidean case in [15, p. 242].

TueorReM 4.5 (The Spherical Bochner Theorem). Suppose
Te2'(G), T> 0. Then T extends uniquely to an element in (€*(G))’
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and there exists a unique positive regular Borel measure p. of polynomial
growth on & such that

Tlg) = [ $du.  9cAG)

The correspondence between T and p is bijective when restricted to K-
biinvariant distributions, in which case the formula holds for all ¢ € €'(G).

Proof. Suppose we are given p a positive regular Borel measure of
polynomial growth on &. We first claim that Z(%*) C LY(u). For take
D e Z(F1). Since # C F! by the Helgason—Johnson theorem, then @
is defined on the support of u. Moreover, there exists some holo-
morphic polynomial P on a * such that {4 (duf| P|) < 0, and thus

[ 1@1de <(supl PO ) [ (@)l P) < oo,
4 F1 »

proving the claim.
Hence the linear functional 7' on Z(#?) given by T[®)] = [, ® du
is well defined. Suppose @, — 0 in F(F'). Then

| 7,11 < sup | P@y)| [ (dufi 1)
F1 P

which converges to zero as n — o0, proving 7' is continuous.

Proposition 3.2 and the Trombi-Varadarajan theorem allow us to
define T € (¥4G)) by T[] = T[§), ¢ € €%(G). Hence T[] = [# ¢ du
and we have only to show T > 0. Take any ¢ € Z(G). Then
(px¢™*)"(A) = @_i[p*xp*] > 0 for all Ae # since ¢_, > 0. Hence
Tlg*xp*] = [o (px¢*)" dp > 0, so that T > 0.

Conversely, suppose T € 2'(G), T > 0. Then by the Godement
theorem there exists a unique positive regular Borel measure p on &
such that T[ex] = [5 ¢f dp for all ¢, € £(G). From Lemma 4.4
the measure p is of polynomial growth on £, and the above con-
struction shows that we can define T, € 2'(G) by T[¢] = [5 ¢ dp.
But {px¢s | p, p € F(G)} is dense in £(G) so that T and 7, must
agree on £(G), hence also on FYG). If T is K-biinvariant, then they
must agree on all of €(G), proving the asserted bijection. |

5. THE ExXTENsION THEOREM
Using the spherical Bochner theorem and the Trombi—Varadarajan
theorem we can deduce which (F?(G))’ space a given positive definite

distribution lies in by examining the support of its spherical Bochner

580{20{3-2
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measure. The relationship is T € (#?(G))’ if and only if supp u C F=,
where 1 <<p < 2and e = (2/p) — 1 (Theorem 5.5). This is a natural
result in light of the Trombi—Varadarajan theorem, but while the
underlying idea of the proof is straightforward, the details are
surprisingly complicated. The desired result will be a consequence of
the first lemma after some rather intricate measure theory and
geometry on a*.

Since a,* = (Jooo F < and Int F< = ). F< we have that each
« € a,* must lie on the boundary of some unique %<, € > 0. Let ¢(«)
be defined as that particular e. Notice that o« — €(x) is continuous.
Also, for each ax€a,* and each R > 0 define Fy(a) = Bg(a) N
Int <) where Bg(a) is the open ball of radius R about «. Note that
o & Br(x).

LemMma 5.1. Suppose T € D'(G), T > 0, such that T € (FP(G))’
for some p, = 1. Let p be the spherical Bochner measure of T, and let «,
be any point in P outside of F <, where ey = (2[p,) — 1. Then for each
nonzero integer m there exists a compact neighborhood U of oy , an R > 0,
and an M < oo such that

f

X —af2mdu()) <M  forall acU.
'QR(a)

Remark. This lemma shows that the measure p is in some sense
“rapidly decreasing” near every point outside of F<. We eventually
wish to show that p is indeed zero near every such point.

Proof. Let ¢ e J(G) be such that | §(oy)| > 0 and let ¥V be a
compact neighborhood of «; such that V and &< are disjoint, and
| $(a)) = ¢ >0 for all «aeV. Now for each ax€a* construct a
W-invariant holomorphic polynomial P, on a,* such that the degree
of P, is uniformly bounded in «, and

(i) Pyx) = O for all x € a*;
(ii) P,» — P, uniformly on compact sets as o® — o in a,*; and

(iii) given U a compact set in a,* and € > 0 such that F*
and U are disjoint, then there exists a ¢ > 0 such that | P,(A)] > ¢
forall xe U and A € -

Such a collection of polynomials exists by Proposition 6.2. For each
a € a* — Fe we define

Y, =¢/P™ on Int Fe), (5.1)
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Then Proposition 6.3 gives that ¥, € Z(F°) for all € < ¢(«), and
o — ¥_ is continuous from ¥ into Z(F). (5.2)

The Trombi—Varadarajan theorem gives the existence of functions
$, which are in #P(G) for all p > p(a), where p(a) = 2/(e(x) — 1),
and are such that ¥, = i, on Int <=, Thus from (5.2) we have

o — 5, is continuous from ¥ into F7YG), (5.3)

and by assumption on T,

o —> T, x$,*] is continuous from ¥ into C. (5.4)

For each a € V take {§, ,.}2_; C £(G) such that ¢, , — ¥, in F2(G)
for all p > p(a) (Proposition 3.1). The spherical Bochner theorem
then gives

T[‘rl’a,n*ﬁb:n] = J:? 1 BZ;u,n |2 dl“" (55)

But the right-hand side of (5.5) is greater than or equal to
Jzel Pum |2 dy. for each ¢ < e(a), and these latter quantities tend
toward [z | 3, |2 dp as n — co since the measure v(E) = p(E N F°),
¢ < ¢(«), defines a continuous linear functional Z(F<) (see proof of
Theorem 4.5). Hence (5.5) gives

Tlhob®] = [ 1flPdu,  «eV, e <<,
Fe
and monotone convergence then implies

Tt > [ fulPds, eV (5.6)
IntFela)

Consider the function F:a* X a* — R defined by F(o, ) =
P(A)IA — «f if A #£ «, and zero otherwise. Pick R > 0 and U
a compact neighborhood of «; such that ,cy Br(a) C V. Since F is
bounded on compacts (Proposition 6.5) there exists M, < oo such

that

[P < Myid—«a, acU, teBg@).

Using this in (5.6) we obtain

TIEAET 2 [ (SOOI N — ™) du).
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Taking M = (MZ™[c®)(sup.ey T[¥.+¥,*]), which is finite from (5.4),
proves the lemma. |]

Remark. 'To prove that p = 0 outside of F*% we must examine
the sets #,(«) for all « € U and 7 small. There are two problems to be
dealt with: (1) The sets #,(a) are irregular in shape, and (2) « ¢ Z,(a).
These will be circumvented by Proposition 5.2, and then Lemma 5.1
can be put into the more useful form of Lemma 5.3.

For each nonzero ax€aq* and r > 0 define o, €0, by o =
(1 — (#/2]) «|))e. This is simply translation of « by a distance of 7/2
toward the origin.

PRrROPOSITION 5.2. For each compact set U in o *, disjoint from the
origin, there exists 0 << ¢ < % such that

B cf(af) c '@r(a)

forallae U andr < Ry = inf, || «].

Proof. Since «, is a convex combination of a and zero when
r < R,, and since « is a boundary point of the convex set #<* and
zero is an interior point, then «, is also an interior point. Hence, since
a, is trivially in B,(«), for each a€ U and r < R, there exists a
constant ¢(7, ) such that B_(a,) C #,(a). The nontrivial part of the
proposition is that ¢ can be taken independently of both « and r for
acUandr <R,.

Let S(r, @) = sup{s | By(e,) C Z()}. Then S(r, «) > 0 for each
a€ U and 0 < r < R, from the above. We thus have only to show
the existence of 0 < ¢ < 1 such that ¢ < S(r, a)/r for all x€ U and
0<r<R,.

(i) First we claim that S(r, «)/r is nondecreasing for each fixed
as r goes down to zero. For suppose 0 < r; < r. Then

S(ry > o)fry = sup{sfry | B{a,) C B, ()}
We alter the coordinate system on a,* by shifting « to zero. Then
Int F <) becomes some open convex set C with zero on the boundary,

and we have

S(ry , a)fr; = s1;p{s/r1 | By(e,, — @) C B, (0) N C}.
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But (o, — o) = (ry/r)(e, — &) and B(ta) = ¢B,;() so that
S(ry» @)fry = SlslP{Slfl (ra/r) Bygyry(or — @) C ((ro/7) B,(0)) N C}
= sup{s/ry | Bun( — ) € B0) N (7/r)C
= supfs/r | By(a; — @) C B{0) N (r1)C}.

But since (#/r;) > 1 and C is an open convex set with zero on the
boundary we get that C C (r/r;)C, hence

S(ry , o)fry = sup{s/r | By(a, — &) C B(0) N C}
= S(r, &)jr.

This of course proves (i).

(i) Our second claim is that o« — S(7, «)/r is continuous from

U to R for each fixed 0 < r << R, . For suppose o, B € U such that

|« — Bll << 8ford > 0. Take any s such that By(o,) C #Z,() and note

that B,_y(«,) C B(B) N Int F< for & small. Now ||a — 8|l < 8 =
li o, — B, || < & when r < R, by simple verification, and hence

B, 5(8;) C B,(8) N Int G.7)

for 8 small. Define
4 = sup{d(\, Int F<@) | e Int <}
A

+ sup{d(2, Int F<@) | x e Int F},
a

where d(A, E) is the distance of A from the set E. (Notice that one of
the two terms defining 4 always has to be zero.) Then from (5.7) we
find that

B, s 4(B;) C B,(B) nInt F<® = #,(p)

for small 8 and 4. Since everything done was symmetric with respect
to « and 8, we find that

| Str, o) — S(r, B)] <26 + 4

for o, Be Uand ||« — B < 3, & small. Our desired continuity will be
established once we show 4 — Q as § — 0 for each fixed «.
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Without loss of generality suppose e(a) > €(B). If A € Int F < then

d(, Int @) — inf{ A — X'|| | X e Int )}

= inf{|n — 7'l | 7 € <(8) Int C}}

where A = £ 4 i3, 5 € () Int C, . But C, is norm bounded in a*, say
by M, . Hence (|7 — (e(B)/e(c)n | < | 1 — (e(B)/e(s)] My , and this
gives 4 < | 1 — (e(B)/e(e))] My — 0 as 8 — Osincern’ = (e(B)/e(x))n €
€(B) Int C, and o — ¢(c) is continuous. This proves (ii).

(iif) We claim (i) and (ii) prove the proposition, since 0 <7 < R,
and « € U imply

S(r, a)fr = S(R,, @)[R, from (i)
> inf S(Ry, )[Ry >0  from (ii). [

LemMma 5.3. Suppose T, p, py , € » and oy as in Lemma 5.1, and let
/A be lebesgue measure on a,*. Then there exists a compact neighborhood U,
of ag and Ry, > 0 such that W(B,(«)) < A(B))r for all r < R, and
x€E U1 .

Proof. Let [ = dim a* and apply Lemma 5.1 with m = [ 1.
Then there exists a compact neighborhood U of oy, R > 0 and
M < oo such that

f 1A —af22dud) <M, «acU r<R
R ¢

Hence
B () < Mr2#+2,  acU, r<R (5.8)
But from Proposition 5.2 we find there exists 0 < ¢ << 1 such that
B/(a40) C Boro(®), o€ U,0 < 7 small. (5.9)
Hence (5.8) and (5.9) combined yield

w(Brop0)) < (Mc?+2) 7242, ae U, 0 <rsmall.

Since A(B,(«x)) is proportional to 72!, then there exists M, > 0 such
that P"(Br(a(r/c))) < MOA(Br(D‘(r/c))) 7% or

w(Brag)) < ABag)), a€lU, 0<rsmal  (510)
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To show (5.10) implies the lemma we have only to show that there
exists a compact subneighborhood U; of &, and some sufficiently
small R, such that for each a € U; and 7 < R, we can find a S € U for
which « = B(» . To do so simply define U; = CI(B; («)) for some
R, > 0 such that By (%) C U. Then for each a € U and r > 0 the
equation o = S(,/0 determines B to be (1 4 (r/(2c | «})))x by simple
verification. Again, simple verification yields that we have only to
restrict 7 so that r <{ 2¢R, to have 8 € U. The desired R, thus equals
2%R,. |}

Remark. Our extension theorem will now result from the above
lemma and the following general covering theorem, a variant of
material found in {S, Theorems 2.8.4 and 2.8.7].

ProrosiTiON 5.4. Suppose C is a compact set in R", A the lebesgue
measure on R™, and p a Borel measure on R™ with the property that for
every € > 0 there exists r. > Q such that u(B,(x)) < eA(B/(x)) for all
xeCandally <r.. Thenpu = Qon C.

Proof. 1f S = B,(x) then define S = B,,(x) and for each ¢ > 0
define ¥, = {B,(x) |x€ C and r <<r/3}. We claim that %, has a
disjoint subfamily %, with the property that for each 7 € &, there
exists S € %, such that 7N S 5 @ and TC S. To prove this let £,
be the collection of disjoint subfamilies 5# of . such that for each
T e & either

(1) forall Ses#, TNnS=g,or
(i) for some Ses#, TNS # @ and TCS.

Notice that (i) implies £, is nonempty since { @} € £, . Partially order
£, by inclusion; then every chain in £, has an upper bound which
is also in £, . Hence Zorn’s lemma gives the existence of a maximal
subfamily %, in 2, , and to show %, is the collection desired we have
only to show that each T e &, satisfies (ii) relative to ¥, , not (i).
Hence we must show = @ where

H ={TeF|TNnS =g forall Se¥).

Suppose ¥~ # @. Then there exists We X such that 2A(W) =
suprex A(T) since this supremum must be finite. But we then claim
that ¢, U {W}e 2, . For take any T € % . If (ii) holds for 7T relative
to @. it also clearly holds for T relative to ¢, U {W}. Thus suppose
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(i) holds for T relative to 9., i.e., T'€ 4. Then 24(W) > A(T) by
definition of W, which implies

2 radius(W) > radius(T). (5.11)

There are only two cases to consider here: T N W empty or nonempty.
If T N W empty, then (i) holds for T relativeto 4. U {W}LIf TN W
nonempty, then 7'C W from (5.11) and hence (ii) holds for T relative
to .U {W}. We have thus verified that ¢, U {W} € 2., which is a
contradiction to the maximality of ¢, . Hence #" = @ and our claim
is proved.

We use the subfamily ¥, to show that p =0 on C. Let
C, = {xeR"| d(x, C) < r. where ¢ = 1}. We then see that

cC Yy TC | SCCyfore<1,
TeSF, Sed,

where without loss of generality we assume 7, <<r, when € < 1.
Hence g A(S) < A(Cy) < o, and therefore &, is countable
since A(S) > 0 for all S € %, . Thus for each ¢ > 0 we have

woy<u(Y s) < T UH< 3 eAld)

=3 Y A(S) < 3neA(Cy).

Sedg
Hence p(C) = 0 since A(C,) < co0. |

THeoreM 5.5 (The Extension Theorem). Suppose T is a positive
definite distribution with spherical Bochner measure p. Then T € (J?(G))’
tf and only if supp u C F<, where 1 < p <2 and e = (2/p) — 1. In
such a case T[p] = [ ¢ dp. for all ¢ € 77(G).

Proof. Suppose supp u C F< for some 0 < € < 1. Then we
easily see that the linear functional 7' on Z(F*) defined by
T[®) = [ D dp is continuous (same procedure as in the proof of
Theorem 4.5 for the ¢ = 1 case). Hence we can extend T to J7(G)
by Tle] = T[¢] = J» ¢ dp.

Suppose T € (J?(G)) for some 1 < p < 2. Then by Lemma 5.3
and Proposition 5.4 we have that supp p C F<. ||

Remarks. When considered for p = 2, Theorem 5.5 becomes
simply the Bochner theorem for K-biinvariant positive definite
tempered distributions (i.e., distributions which lie in (€% G))),
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which was first proved by Muta [14] in much the same fashion as the
euclidean Bochner theorem is proved in Schwartz [15, p. 275]. It is
of interest to note that Muta’s definition of a tempered K-biinvariant
positive definite distribution differs from ours, while the spherical
Bochner theorem indirectly proves them equal. Muta defines a
tempered K-biinvariant distribution 7 to be positive definite if
T[pxe*] = 0 for all ¢ € £(G), which on the surface is a less restrictive
definition than ours. We prove the equivalence directly in the
following manner. Suppose 7' is positive definite in Muta’s sense,
and take p € Z(G). Then (px¢*)*(A) = 0 for all A€ £ since p_, > 0
for all A € Z. But from the proof of [15, Theorem XVIII, p. 276] there
exists a sequence {@,}* ; C F(a*) = Z(F°) such that | D, |2 —
(px@*)" in F(a*). Noting Schwartz’s construction we see that these
@, may be taken as IW-invariant, and thus | @, [>* — (¢*x¢*)" in
Z(F°). But there exists ¢, € #%G) such that ¢, = @, , and hence
Pu*@,* — (px@*)® in FXG). Therefore T[p,x¢,*] = T[pxe*] in C,
and it is easy to see that T[pxp*] > 0 for all p € #%G). Hence T is
positive definite in our sense.

It is by no means obvious that this equivalence of definitions holds
for nontempered K-biinvariant positive definite distributions. This
would seem to depend on the truth of the following

Conjecture. Given ¥ e Z(F<), ¥ >0 on # N F=, then there
exists a sequence @, in Z(F¢) such that, with ¥, (1) = @,(d) &,(})
for each Ae Z<, we have ¥, > ¥ in Z(Z<). This is certainly a
questionable statement except for the case ¢ = 0.

CoroLLARY 5.6. Consider T € 2'(G), T > 0, K-biinvariant. Then
if the spherical Bochner measure p is supported in a* U C, where C is a
compact subset of a*, then T = S + f, where S is a tempered K-
bitnvariant positive definite distribution and f is a continuous
K-biinvariant positive definite function. In particular, this is always true
in the real rank one case.

Proof. Let py(E) = w(Ena*) and py(E) = w(E N (a* — a*))
for all Borel sets E in a,*. Then by Theorem 5.5 we have that y, gives
rise to a tempered K-biinvariant positive definite distribution S.
By the spherical Bochner theorem, we have that u, must be finite
since it is supported in the compact set C. Hence p, gives rise to a
continuous K-biinvariant function f and clearly 7' = S + f.

Suppose that G is of real rank one. Then £ is contained in a* U (ia*)
since A and A are W-conjugate for all Ae 2, and W = {5, , s5,} where
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$5A = A, sA = —X for all Aea*. Then the Helgason—]Johnson
theorem gives that Z C a* U {C, , which is the desired form. [

6. TecHNICAL RESULTS ON THE Z(F*) SPACES

Most of the previous results have relied on the existence of certain
special elements in the Z(5<) spaces. In this section we construct
these various functions.

PropPOSITION 6.1. For each € > O there exists a mnonconstant
W-invariant holomorphic polynomial on a,* which is uniformly bounded
away from zero on F<. For P any such polynomial and ® € Z(F), then
(®/P) € Z(F<). Moreover, there exists such a polynomial P which is
positive on .

Proof Let € ,...,€; be any basis of a*. Then for Aea* let
/\—23—1 (/\ EC) A= &+ iy (€ nea¥), andforeachc>Olet
Pd) =c+ 27-1 A2. We then have

PN =c+Y&—Yn2+2) ém;.

But, as a function on ¢, | Y 52| is uniformly bounded by some
finite constant, say ¢,. Taking ¢ = 2¢, we obtain | P,}) =
1200 + X262 — X921 =2 ¢ >0 for all AeF<. Then P(A) =
[Leew P(X%) satisfies the desired conditions since % is W-invariant.

Suppose @ € Z(F<). Then ¥ = @[P on Int F¢ is clearly well
defined, holomorphic and W-invariant. To prove ¥ e Z(Z*) there
remains only to show that for each holomorphic differential operator D
with polynomial coefficients we have

sup | D¥| < oo. 6.1)
IntF€

Suppose D is of order zero. Then D equals a holomorphic polynomial
O on a* so that
supe | D¥ | < (1/e) sup‘ [0 |,

where | P| > ¢ on #= Thus (6.1) holds for such D since ® € Z(F°).

Suppose (6.1) holds for all D of order < k — 1, all ® € Z(F°)
and all P as specified in the proposition. If D is of order £ we may
assume without loss of generality that D = E(d/éA,), where E is of
order 2 — 1. Hence

DY = E[(29/o\,)|P] — E[(2P]a))P[P?].
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But @®/o), and (0P[o),)P are Z(F*), and both P and P? satisfy the
induction hypothesis. Hence (6.1) holds for D of order %, and hence
for all D by induction.

The last statement of the proposition follows by taking O(A) =
P(X) P(}), since A € Z implies A and A are Weyl group conjugate. ||

Remark. 'The next two propositions comprise a refinement of
Proposition 6.1 which was used in proving the extension theorem.

ProprosiTioN 6.2. For each «€a,* there exists a W-invariant
holomorphic polynomial P, on a* such that degree P, is uniformly
bounded in «, and

(1) Pyo) = O for all a €a,*;
(i1) P,. — P, uniformly on compacts as o™ — « tn a,*; and
(i) Given U a compact set in a* and € > 0 such that

Fen U = &, then there exists a ¢ > 0 such that | P,(A)| > c for all
oaxe Uand Ae Fe.

Proof. Welet L be any hyperplane in a* which lies on a face of C, ,
and take a basis ¢ ,..., ; of a* such that ¢; €L and e,,..., ¢, span a
hyperplane parallel to L. This is possible since zero is an interior
point of the convex set C,. Then coordinatizing a* by 5 = 3 7;¢;
gives that L is the solution set to the equation 7, = 1. Notice that the

set of solutions to #; = —1 must also lie on a face of C, since
C, = —C,, and therefore C, lies between the hyperplanes determined
by 7,* =

Parametrize a,* by A =X N5, A, = &+ n; and o = ¥ e,
a; = B; + ty; for all A, aea*. With ¢(«) the unique € such that
a € Bdry #+, let Q, be the holomorphic polynomial in X given by

Quld) = e(=)® + (A — Bo)*.

Suppose U is a compact setina,* and e > Osuchthat #F<N U = 7.
Then ae U implies ¢(ax) > ¢ (since F<= (.. F) and taking
A € ¢ arbitrary we obtain

[Q.(3)] = | (@) + (& — B —m® + 26 — B m | = (o) — n*

But A € F< implies n € €C,, which in turn gives | %, | < e. Hence,
letting ¢ = inf,; e(a)? — € we have | Q,(A)] > ¢ for all a€ U and
A€ F<, where ¢ > 0 since U is compact. Thus Q, satisfies (iii). It
follows trivially that Q, also satisfies (ii), at least pointwise, since
o — €(a) and « — B; are continuous. The uniform convergence on
compacts results because degree Q, = 2 for all a € a,*.
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Let {L,,...,L;} be all hyperplanes of a* which lie on faces of C, .
Then for each L; we have a set of polynonnals {P.}sca, as defined
above. For each a € a,* we let R, = I—L—1 PJ. Then (i) and (111) still
hold for R,, but we claim (i) also holds from the following. By
definition of €(«) we have a € Bdry #<). Thus, with « = B + 7y,
we have that y lies on at least one face €(x) L; of ¢(«) C, . Hence, in the
coordinate system associated with L;, we have y; = (o), and
if PJ is the polynomial associated with L; we have Pj(a) =
€()* 4+ (B, + iy, — By)* = 0. Hence R(a) = 0.

Finally, since &< is W-invariant we have that P, = [],.» R
satisfies all the desired conditions.

ProrosITION 6.3. Suppose {P, | a € a,*} as in Proposition 6.2, and
fix both € > 0 and @ € Z(F*). Defining ¥, = ®|P, on F* for each
a € a* — F, then « — ¥, is continuous from a* — F< into Z(F*).

Proof. First note that ¥, € Z(F*) for all a¢ F< from Propo-
sition 6.1. Let a® — « in a,* — F<. We have only to show that if D
is a holomorphic differential operator on a,* with polynomial
coefficients, then suppigze| D(¥, — W) — 0. First notice that
Y, — ¥u = (P» — P)[P,P,)P is of the form (Q,/R,)P, where O,
and R, are W-invariant holomorphic polynomials on a * such that
(a) | R, | = ¢ > 0 on &= for all n, (b) 0, and R,, converge uniformly
on compact sets, O, — 0 and R, — R, where R is some W-invariant
holomorphic polynomial on a.*, and (c) the degrees of O, and R,
are uniformly bounded in » by some N < co. We thus set
¥, = (0,/R,)® and show that sup,,se| D¥, | — 0 by inducting
on the order of D.

(i) Suppose order D = 0. Then D = P for some holomorphic
polynomial P on a,*, and thus

sup | DY, | < ¢t sup |0,PO |
IntF€

But we may express 0.(2) as Z”Ig}v c"A, where I = (i,,..., 7)),
|I| =4 -+ - +14;, and X = Xa --- X% for Al y-s A; SOmMe complex
coordinate system on a*. Moreover, for each ﬁxed I, ¢»—0 as
n — oo. Thus

[ DY,(N] < ¢ Q.(0) PQ) ()]

<t X GupalarD NI POOW  for Aess

1IN
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where sup,, | ¢/*| < oo for each I. Take any 8 > 0. Since @ € Z(F*)
there exists a compact set C C %< such that

(Z (sup e ) [ M |) | PQ) D) < (c/2)8  forall AeF<— C.

But, on C, Q, tends to zero uniformly so there exists 7, such that
supe | O, | < (¢/2)8 supc | P | for all n > n, . Hence | D¥,(A)] < 3
for all » > n, and A € Int #<, and therefore D¥, — 0 uniformly on
Int &< when D is of order zero.

(i) Suppose D¥, — 0 uniformly on Int Z< for all D of order
less than k and for all ¥, of the specified form.

(ii) Take D of order k. Using some complex coordinate system
AL -y A; ON @ * we may assume without loss of generality that
D = E(&/dd,), where E is a differential operator as in (ii). Then

sup | D¥, | < ;\:3(! E{(8Qn/0M)P|R,}

Int#

— E{Q,(2R,[o))P|R,2} -+ E{Q,(6®[oN,)/R,)]

and each of the terms satisfies the induction hypothesis. |

Remark. We end with two technical results which were used in
Sections 4 and 5.

ProrosiTioN 6.4. Suppose {{;}, is a sequence of functions in C(G)
such that \); supp {; is relatively compact and [ | {(g)| dg is uniformly
bounded in j. Then for D any constant coefficient holomorphic differential
operator on a*, {D{}2, is a uniformly bounded set of functions on F*
for each e > 0.

Proof. Let C = CI(U; supp {;). Then
DL = | 48) Dilp-a(s) g

since C is compact. Hence | D{;(A)| < ¢; sup,ec | Di(p_i(g))! for all
Aea* and jeZ*t, where ¢; = sup; [ | {;(g)l dg. We have only to
show that sup,.. | Dy(e_i(g))| is uniformly bounded on F* for each
e > 0.

Take a basis ¢ ,..., €; of a*, and for Aea,* put A = 3; Aj¢; (4; € C)
and A; = &; +im;. Let Hy,.., H, be a dual basis of a, so that
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e(H;) = 8;. We write H(g) = 29—1 {(g) H;, with each ¢; a
continuous functlon from G to R. Then /\(H(g)) = 23—1/\, (g) S0
that D,eMH@) — P (—ic(g)) e i¥H@) for P, some polynomlal in
l-variables and ¢(g) = (¢;(£)--., ¢(£))- Thus

t Da(p-r(2Nl = ' D, f o~ ir+olH(ak) dkl
K
< sup | Pp(—ic(gk)) g rIHGR) |
ek
= sup | Pp(—ic(gk)) o) H (k) R (6.2)
ek

where A = £ + #. Consider g € C and A € %+ for some fixed ¢ > 0.
Then gk € CK which is compact in G, and hence sup;.¢, | Pp(—ic(gk))|
is uniformly bounded for g C. But Ae F<if and only if A = £ + o,
where € €C, . Hence {n — p | A € <} is compact in a* which implies
{(n — p) H(gk) | Ae F, g C, ke K} is bounded in R. This proves
from (6.2) that | Dy(p_x(g))! is uniformly bounded for Ae %< and

geC. |}

PRrOPOSITION 6.5. Suppose for each o € a,* we have a W-invariant
holomorphic polynomial P, on o * with degree < N << oo for all o such
that

(i) Pux) = O for all x € a,*; and
(i) P, — P, uniformly on compact sets as o, — « in a*.

Then the function F: a,* X a,* — R defined by F(a, A) = | P,QA)|/I| A — «||
if X 5~ o, F = 0 otherwise, is bounded on compact subsets of a,* X a*.

Proof. Pick a basis € ,..., €; of a* which is orthonormal with respect
to<{, d,and forAca*letA = ¥ Aie; (A;€C). Then | A; | < || Al for
each j = 1,..,, L. Since P,(}) = Yocjn<y @{)(A — «)f (notation as in
the proof of Proposition 6.3), where a,: a,* — C is continuous for
each I, we then easily see that P,(A)/| A — «|| is bounded on compact
subsets of a,* X a*.

Remark. The referee has suggested that it may be possible to find
analogs of the results of this paper for functions on the homogeneous
space G/K which transform according to a fixed representation of K
on the left. It is hoped that the formulation and proof of such results
would follow in the same manner as for the K-biinvariant functions
on G previously given.
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