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KERNELFUNCTIONS ON DOMAINSWITH HYPERELLIPTIC

DOUBLE(')

BY

WILLIAMH. BARKERII

ABSTRACT.Inthis paper we show that the structure of the Bergman and

Szegö kernel functions is especially simple on domains with hyperelliptic

double. Each such domain is conformally equivalent to the exterior of a

system of slits taken from the real axis, and on such domains the Bergman

kernel function and its adjoint are essentially the same, while the Szegö

kernel function and its adjoint are elementary and can be written in a closed

form involving nothing worse than fourth roots of polynomials. Addition-

ally, a number of applications of these results are obtained.

Suppose that % is a compact Riemann surface and that / is a meromor-

phic function on 6liS.The function/ is then an analytic mapping onto the

Riemann sphere S0, and it is a fundamental fact that each point of S0 is

assumed precisely the same number of times. This common number is called

the order of /. Thus, for example, if the order of / is one, then ^ is a

conformai homeomorph of the Riemann sphere. The next possibility is for %

to admit a meromorphic function of order two, and in this case % is termed

hyperelliptic. The hyperelliptic surfaces are thus in this sense the second

simplest class of Riemann surfaces, and it is widely recognized that the

hyperelliptic surfaces play a significant role in the more general theory of

compact Riemann surfaces. Observe, also, that all Riemann surfaces of genus

zero, one, or two are hyperelliptic.

Our concern here, however, is not with compact Riemann surfaces per se,

but rather with plane domains. The significance for us of the compact

surfaces is that each plane domain of connectivity n can be embedded in a

natural way in a compact Riemann surface of genus n —1 called the double

of the domain. See, for example, [13]or [12].

Definition 1. For each n > 1, let &„be the class of plane domains whose

boundary is formed by n disjoint peicewise analytic curves. We shall denote

by Hn the class of all domains in éE„which possess a hyperelliptic double, by

S„ the class of all domains in 6E„which are symmetric with respect to the real
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340 W. H. BARKER II

axis and whose intersection with the open upper half plane is simply con-

nected, and by 2„ the class of all domains which are the exterior of a system

of n slits taken from the real axis.

Our concern now is to indicate how the special structure of the compact

hyperelliptic Riemann surfaces is reflected in the class Hn. We will focus here

on the structure of the Bergman and Szegö kernel functions defined on

domains in Hn. The tools developed here will enable an elegant treatment of

Noether's theorem for domains in Hn, as well as the variational theory of

functionals on domains in Hn.

We begin with the fundamental geometric fact concerning domains in the

class Hn. The proof of this result is immediate from well-known properties of

hyperelliptic surfaces. See [3].

Theorem 1. Thefollowing are equivalent:

(1) D E Hn,

(2) D can be mapped one-to-one conformally onto a domain in 2„,

(3) D admits an anticonformal involution possessing precisely 2« fixed points

on the boundary of D.

Theorem 1 is important in that the class 2„ will play a role here similar to

that played by the unit disk in the theory of functions on simply connected

domains. Indeed, it will become evident that domains in the class 2„ are in

many respects the second simplest class after the unit disk. As a consequence

of Theorem 1, observe also that H„ D Sn D 2„.

Definition 2. Let rx,r2,..., r2n be the endpoints of the line segments

which form the boundary of D E 2„. Then the "structure polynomial" of D

is defined to be the polynomial q(z) = Il(z —r) where the product is taken

over all finite endpoints r¡.

Note that if D E 2„ has the structure polynomial q(z), then the double of

D is conformally equivalent to the Riemann surface w2 - q(z) = 0. As an

immediate consequence of this, let ex, e2,..., e2n be 2n distinct points

located in the finite plane. Then a necessary and sufficient condition for the

Riemann surface w2—U2Zx(z—ej) = 0 to be the double of a plane domain

is for the e,.to be located in a circle. Compare, for example, [6].

Now let D be a domain in the class S„ and suppose that o^ is the harmonic

measure on D with boundary values 5 on y„. Each w^ is the real part of a

multivalued analytic function w^z) = u^z) + ia^fz) whose derivative is sin-

gle-valued on D. Observe that because of the symmetry of D,

(1) m/(z) = h/(z) , z G D,D G S„.

We also define the induction coefficients P , p, v = 0,1,2,..., n —1, by
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The matrix [i>(W]^i~'_iis strictly positive definite and, hence, possesses the

inverse matrix [IT ].

ContinuingwithD £ §„, let K(z, f) and L(z, £) = (z - f)~7* ~ {(z>Í)

be the Bergman kernel function and its adjoint for D, and let K(z, f ) and

•£(2>?) = (z - Çy2/^ ~ î(z> O be the semiexact Bergman kernel function

and its adjoint for D. The kernel functions K(z, f ) and Â^(z,f ) are analytic

in z, antianalytic in £, and satisfy

(2) K(z,t)-K(z,$)-± 2 n„w;(z)w;(o.

Similarly,

(3) l~(z,n = L(r,i) - ¿ 2 nFw;(z),;(f).
ft,"=l

Now observe that whenever f is in Z>,so also is f in D, and so Z) admits the

anticonformal involution K(f ) = f. We thus define the kernel functions

K(z,£) = K(z,Y(Jj) and K(z, S) - K(z, TJgj).

The kernel functions ÄT(z,£) and AT(z,f) are analytic and symmetric in both

variables z and f.

Now for s E D, let

<p(r,s) = 1/ (t - s) + ax(t - s) + a2(r - s)2+ • • • ,

t(t, s) = l/(t-s) + cx(t -s) + c2(t - s)2 +

be univalent functions on D which map D onto the exterior of a system of,

respectively, horizontal and vertical slits. It is known then that

(4) ^[<p'(t^)-nt^)] = K(t,s), (<p'(t,s)=dcp(t,s)/dt),

and

(5) ±[<p'(t,s) + V(t,s)]--L(t,s).

See,for example,[4,p. 82]or [9,pp. 361-368].

Now assume that s E D is a point on the real axis so that, in particular,

s = s — V(s). Forming the sum of equations (4) and (5) and using (1), (2),

and (3), we obtain, for s real,
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<p'(t, s) = -(t - s)~2+ ax + 2a2(t - s)2+ ■■■

(6) =*n(K(t,s)-L(t,s)),

= v(K(t,s) - L(t,s)), s real in D.

Now let j and u be two points of D taken from the real axis. Then the

canonical horizontal slit mappings <p(t,s) and <p(t,u) satisfy

(7) cp(t, u) - <p(s, u) = cp'(u, s)/[(p(t, s) - <p(u, s)],

and from equation (6) we have

rr(K(u, s) —L(u, s)) = (p'(u, s)

(8)

= (<p(t, u) - ip(s, u))(<p(t, s) - <p(u,s)).

We also have the power series developments of the functions tp(t, u) and

tp(t, s) near the point t = s:

(9) <p(t,u) = f bn(t -s)", bn= <p<"\s,u)/n\

(10) <P(t,s) = (t-sYX+?,an(t-s)n.

n=\

Substituting the expansions (9) and (10) into equation (8), and collecting

together terms of equal degree in (t —s), we find that

OD K= \

<p'(u,s), n = 1,

<P(".̂ î. n = 2,

n-2

cp(u,s)bn_x - 2 "jk-x-j, n > 3.

y-i

Observe that (11) permits us to solve for the b„ in terms of the an and the

numbers <p(«,s) and <p'(u,s). Additionally, we have the following important

application of the system (11).

Theorem 2. If D is a domain in the class S„, thenfor all s and u in D,

(12) Äl0g[*(j' U) " L(5' ")J = 2^K(S' ") ~ L(J' ")J-

Proof. First let s and u be taken from the real axis in D. From equation (6)

and the expansion (9), we see that

(13) (d/ds)log[K(s, u) - L(s, «)] = 2b2/bx, s and u real.

But from (11), the right-hand side of equation (13) is simply 2<p(w,s). Thus,
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jY log[K(s, u) - L(s,u)]= 2<p'(H,î), s and u real.

With the restriction that 5 and u are taken from the real axis, equation (12)

follows immediately from equation (6). Observe, however, that both sides of

equation (12) are analytic functions in j and u, and, consequently, (12) holds

for all s and u in D.

We remark that identities of the form (12) have been extensively studied in

the past by, among others, Schiffer and Hawley [11]. It is interesting to note

that the system (11), in concert with equation (6), provides an effective tool

for establishing additional, albeit more complicated, identities of this form.

As a final application of equation (6), we have the following result.

Theorem 3. For D a domain in the class 2„, and all t, s G D,

(14) K(t, s) = -l(t, s) and K(t, s) = - l(t, s).

Proof. First note that if s G D is a point taken from the real axis, then

<p(t,s) = \/(t —s). From this fact and equation (6), it follows that (14) is

valid for all real s in D. But observe that K(t, s), l(t, s), K(t, s), and ï(t, s)

are all analytic functions of the variable s, whence the identity (14) must hold

for all s in D as claimed.

For D a domain in the class &n, let K(z, Ç) andL(z, f) be the Szegö kernel

and its adjoint for D. For fixed Ç E D, the functions K(z, f ) and L(z, f ) are

uniquely determined by the conditions:

(a) K(z, f ) is analytic for all z E D;

(b) L(z, I) is analytic for all z G D except for a simple pole at z = f with

residue 1/2^; _

(c) L(z, l)dz =iK(z, $)\dz\ for all z GdD.

See, for example, [10].

Now suppose that the domain D is in the class 2„ and that the point at

infinity is in D. The boundary segments of D are then of the form

V,= K+i' r2j+2], J = 0, 1,2,..., n - 1,

and we assume that the endpoints are ordered by the condition rx < r2

<■■ <r2n.

We define two polynomials qx(z) and q2(z) by

/i-l n-\

(15) qx(z) = II (z - r2J+x) and q2(z) = II (z - r2j+2);

y-o j=o

the zeros of qx(z) axe located at the left-hand endpoints of the boundary

segments y,,j = 0, 1, 2,..., n — 1, while the zeros of q2(z) are located at the

right-hand endpoints. The product qx(z)q2(z) is precisely the structure poly-

nomial q(z) for the domain D. We further define the function m(z) on D by
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(16) m(z) - q2(z)/qx(z).

Observe that m(z) effects an n-fold covering of D over the domain

H = C\{w: -co < Re w < 0}.

For w in H, we will denote by Vw and Vw the unique analytic square

root and fourth root on H which satisfy VT = 1 and VT = 1.Note that

Vw = Vw and Vvv= Vw .

Theorem 4. For D a domain in Z„ which contains the point at infinity, the

Szegö kernel function and its adjoint are, respectively, the functions

, }/m(z) - }/m($)

(17) K(z,$)~

and

(18) L(z,$) =

Mz"0 }fn~(z~)^m($)

! }fnjzj + }[m~(r)

Proof. For f fixed in D, define functions fx(z) and/2(z) on D by

/iW =

and

/2(') =

! Vm(z)+ V#w(jT)

\/m(z) i/m(f )
4*(*-n «y

/,(z) is analytic for all z in Z), while f2(z) is analytic for z in D except at the

point z = £ where it has a simple pole with residue 1/2tt. For z taken along

the boundary of D, we claim that

(19) f2(z)dz = ifx(z)\dz\.

First suppose that z is on the upper edge of one of the boundary segments of

D. Then dz = dx = \dz\, \m(z) = -ym(z) , and for some r > 0,

^m(z) = re*/4- re_,v/4 = -i^m(z) .

We thus have
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_ 1 -}¡m(z) - Vm(f)

4^z *> -^(z)vMO

as claimed. If z is taken on the lower edge of one of the boundary segments,

then dz = - dx = - \dz\, ym(z) = —ym(z) , and for some r > 0,

tjm(z) = re"^^ = rem/4 = iyjm(z) .

Thus,

1 -yjm(z) - yjmlj)

"'« H- ï^Jj ¡ 4 * "AW *.
v 0/ ym(z) ym(s)

and so equation (19) holds in either case. The defining conditions for the

Szegö kernel function and its adjoint are thus satisfied, and the proof is

complete.

The kernel functions K(z, f ) and L(z, f ) play an especially important role

in the theory of bounded analytic functions. If we define

B[D] = {functions/(z) analytic in D: |/(z)| < 1 for z G D },

then the function

F(z,$) = K(z,t~)/L(z,Ç),

when viewed as an analytic function in the variable z, is a member of

B[D]. Additionally, F(z,Ç) solves the extremal problem |/'(f)l = max>a^

/ G B[D], and if /0(z) is a second extremal function, then for some real 9,

f0(z) = ei9F(z,$).

See, for example, [4, Chapter VII] and [7], Compare also the original treat-

ment due to Ahlfors [1] and that of Garabedian [5]. Observe that, for

D E 2„, we have

z-t Jn~(z)- vRTj" iRñ
F(z,Ç)-z--7=--J==^ ,

z-S yjm(z)+ ^m(S) ifi(Jj

and thus the following theorem is immediate.

Theorem 5. Let D be a domain in 2„ which contains the point at infinity, and

letf(z) be analytic on D and satisfy \f(z)\ < 1. Thenfor all z in D,

(20) \f'(z)\

1 ImV^ÖÖ"
-» Im z t¿=0,

2X/\m(z)\ lmz

m'(z)/4m(z), lmz = 0,
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with equality at some point z0 if and only iff(z) = e'9F(z, z0).

As a final application of Theorem 4, let D E 2„ have boundary compo-

nents y0, yx,. .., y„_, and induction coefficients P^, p, v = 1, 2,. . ., n —

1.The theta function (associated with the domain D) is then defined by

9(zx,z2,..., z„_,)= 2exP I -^E-fVv",. + 22»yü

where m = (mx,..., mn_x) runs over all integral (n — l)-tuples. At the

origin, 9 has the expansion

9(zx,..., z„_x) = 9(0) + \ ^9j<k(0)zjzk +....
¿ : I,
j.k

With this,we then have

-.2 M°) „
4mK(z,!)= K(z,í) - f 2 47ñr^)^(0.

(21)

J.k

4mL(z,t)2=L(z,$)-^ 2

>,*

0(0)

M°)
0(0)

wj(*K(0-

See [8].

Combining equations (14) and (21), we now obtain the following beauti-

fully symmetric representations for the kernel functions K(z, f ) and L(z, f ):

.2

(22)

„, „ i [V^í\^(ñ"- \^í\Sñ" i

V^ÍAñ

and

¿(*,f ) =

M°)

4îT

(23)

(*-*)
\^í^(ñ

M0)

♦íSm^^
7,*

Observe that we have reduced substantially the number of transcendentally

defined kernel functions. On a domain in 2„ both the Szegö kernel function

and its adjoint are elementary while the Bergman kernel function and its

adjoint are essentially the same. Moreover, if the theta function and the

differentials m/(z) are known, equations (22) and (23) completely identify the
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Bergman kernel function and its adjoint.

We remark that an alternative approach to the Szegö kernel function is

through the Klein prime function. Indeed, Hejhal [8] was able to establish, in

the case of an arbitrary Riemann surface, explicit formulas for the Szegö

kernel function involving only the Klein prime function and the theta

function. It is of particular interest to note here that, in the hyperelliptic case,

the theta function can be written in terms of the Klein prime function, which

in turn can be expressed in terms of the algebraic functions on the Riemann

surface and their integrals. See, for example,Baker [2,pp. 433-466,425-430].

Thus, in view of equations (22) and (23) above, it is possible to express the

Bergman kernel function and its adjoint on a domain in the class 2n entirely

in terms of algebraic expressions.
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