Document Type
Article
Publication Date
12-1-2011
Abstract
Recent speciation events provide potential opportunities to understand the microevolution of reproductive isolation. We used a marker-based approach and a common garden to estimate the additive genetic variation in skeletal traits in a system of two ecomorphs within the coral species Favia fragum: a Tall ecomorph that is a seagrass specialist, and a Short ecomorph that is most abundant on coral reefs. Considering both ecomorphs, we found significant narrow-sense heritability (h 2) in a suite of measurements that define corallite architecture, and could partition additive and nonadditive variation for some traits. We found positive genetic correlations for homologous height and length measurements among different types of vertical plates (costosepta) within corallites, but negative correlations between height and length within, as well as between costosepta. Within ecomorphs, h 2 estimates were generally lower, compared to the combined ecomorph analysis. Marker-based estimates of h 2 were comparable to broad-sense heritability (H) obtained from parent-offspring regressions in a common garden for most traits, and similar genetic co-variance matrices for common garden and wild populations may indicate relatively small G × E interactions. The patterns of additive genetic variation in this system invite hypotheses of divergent selection or genetic drift as potential evolutionary drivers of reproductive isolation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
Recommended Citation
Carlon, David B.; Budd, Ann F.; Lippé, Catherine; and Andrew, Rose L., "The quantitative genetics of incipient speciation: Heritability and genetic correlations of skeletal traits in populations of diverging favia fragum ecomorphs" (2011). Biology Faculty Publications. 8.
https://digitalcommons.bowdoin.edu/biology-faculty-publications/8