Document Type


Publication Date



Studies from diverse organisms show that distinct interchromosomal interactions are associated with many developmental events. Despite recent advances in uncovering such phenomena, our understanding of how interchromosomal interactions are initiated and regulated is incomplete. During the maternal-to-zygotic transition (MZT) of Drosophila embryogenesis, stable interchromosomal contacts form between maternal and paternal homologous chromosomes, a phenomenon known as somatic homolog pairing. To better understand the events that initiate pairing, we performed a genomewide assessment of the zygotic contribution to this process. Specifically, we took advantage of the segregational properties of compound chromosomes to generate embryos lacking entire chromosome arms and, thus, all zygotic gene products derived from those arms. Using DNA fluorescence in situ hybridization (FISH) to assess the initiation of pairing at five separate loci, this approach allowed us to survey the entire zygotic genome using just a handful of crosses. Remarkably, we found no defect in pairing in embryos lacking any chromosome arm, indicating that no zygotic gene product is essential for pairing to initiate. From these data, we conclude that the initiation of pairing can occur independently of zygotic control and may therefore be part of the developmental program encoded by the maternal genome. Copyright © 2008 by the Genetics Society of America.