Document Type


Publication Date



Increasing application of road deicing agents (e.g., NaCl) has caused widespread salinization of freshwater environments. Chronic exposure to toxic NaCl levels can impact freshwater biota at genome to ecosystem scales, yet the degree of harm caused by road salt pollution is likely to vary among habitats and populations. The background ion chemistry of freshwater environments may strongly impact NaCl toxicity, with greater harm occurring in ion-poor, soft water conditions. In addition, populations exposed to salinization may evolve increased NaCl tolerance. Notably, if organisms are adapted to their natal lake water chemistry, toxicity responses may also vary among populations in a given test medium. We examined how this evolutionary and environmental context may interact in shaping NaCl toxicity with a pair of laboratory reciprocal transplant toxicity experiments, using natural populations of the water flea Daphnia ambigua from three lakes differing in ion availability. The lake water environment strongly influenced NaCl toxicity in both trials. NaCl greatly reduced reproduction and r in lake water from a low-ion/ calcium-poor environment compared with water from both a calcium-rich lake and an ion-rich coastal lake. Daphnia from this coastal lake were most robust to the effects of NaCl. A significant population x environment interaction shaped survival in both trials, suggesting that local adaptation to the test waters used contributed to toxicity responses. Our findings that the lake water environment, adaptation to that environment, and adaptation to a focal contaminant may shape toxicity demonstrate the importance of considering environmental and biological complexity in mitigating pollution impacts.