Document Type
Article
Publication Date
7-1-1994
Abstract
The apparatus that permits protein translocation across the internal thylakoid membranes of chloroplasts is completely unknown, even though these membranes have been the subject of extensive biochemical analysis. We have used a genetic approach to characterize the translocation of Chlamydomonas cytochrome f, a chloroplast-encoded protein that spans the thylakoid once. Mutations in the hydrophobic core of the cytochrome f signal sequence inhibit the accumulation of cytochrome f, lead to an accumulation of precursor, and impair the ability of Chlamydomonas cells to grow photosynthetically. One hydrophobic core mutant also reduces the accumulation of other thylakoid membrane proteins, but not those that translocate completely across the membrane. These results suggest that the signal sequence of cytochrome f is required and is involved in one of multiple insertion pathways. Suppressors of two signal peptide mutations describe at least two nuclear genes whose products likely describe the translocation apparatus, and selected second- site chloroplast suppressors further define regions of the cytochrome f signal peptide.
Recommended Citation
Smith, Tracy A. and Kohorn, Bruce D., "Mutations in a signal sequence for the thylakoid membrane identify multiple protein transport pathways and nuclear suppressors" (1994). Biology Faculty Publications. 176.
https://digitalcommons.bowdoin.edu/biology-faculty-publications/176